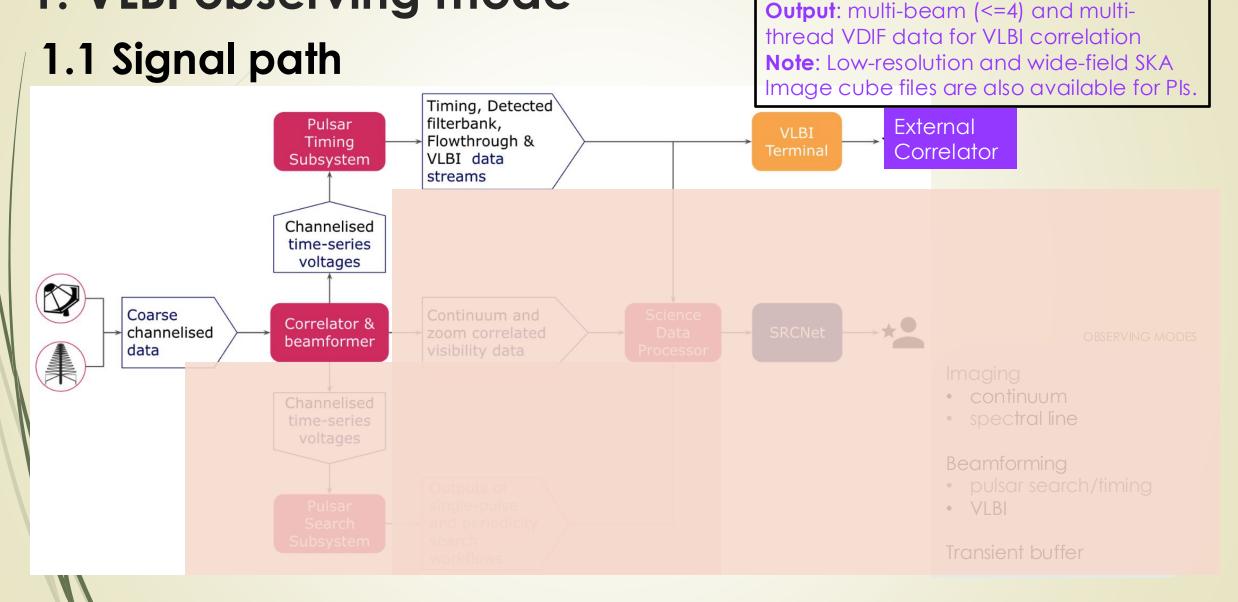


VLBI observations with the SKA-Mid at 12/15 GHz

Dr. Jun Yang


Co-chair of SKA-VLBI Science Working Group
Senior Research Engineer & VLBI Support Scientist
Onsala Space Observatory, Chalmers University of Technology, Sweden

The 10th International VLBI Technology Workshop, Chalmers, 21-25 Oct 2025, Sweden

Collaborators

- Jack Radcliffe (UK SKA Regional Centre)
- Cristina García Miró (IGN Yebes, Spain)
- Zsolt Paragi (JIVE, The Netherlands)
- Cormac Reynolds (ATNF, Australia)
- Bo Zhang (Shanghai Astronomical Observatory, China)
- Wen Chen (Yunnan Observatories, Chinese Academy of Sciences, China)
- Yingjie Li (Purple Mountain Observatory, China)

1. VLBI observing mode

VLBI Control: VEX files.

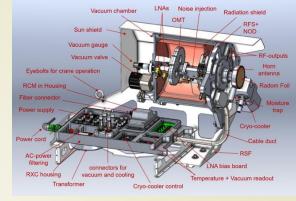
4

1.2 Sensitivity for the tied arrays

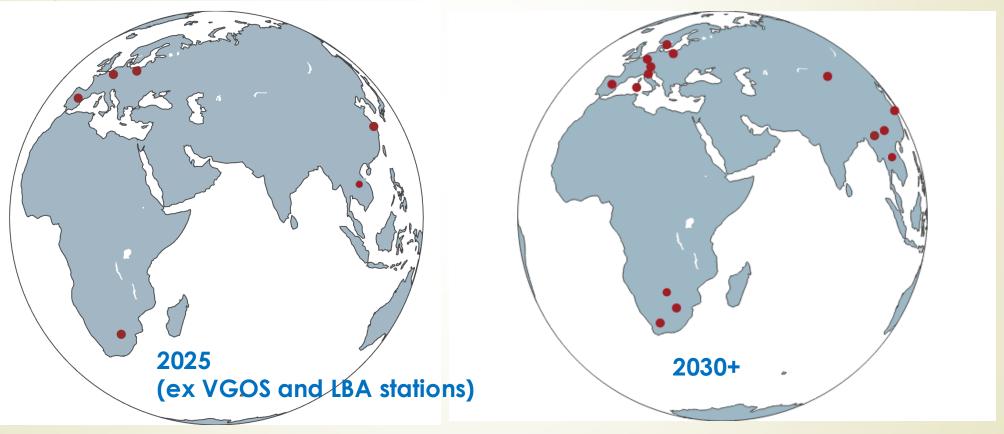
	System Equivalent Flux Densities (SEFDs) for phased-up VLBI beams									
Array	SKA-Low (Core<1km) AA* Core: 199 st AA4 Core: 224 st	SKA-Low (Inner 10 km) AA* : 271 st AA4 Core: 404 st	SKA-Mid: inner 20 km diameter AA2 (64x15-m dishes, No MeerKAT dishes) AA* (77x15-m dishes at 0.3-15 GHz & 64x13.5 m dishes at 1.4 GHz) AA4 (110x15-m dishes at 0.3-15 GHz & 64x13.5 m dishes at 1.4 GHz)							
Band	50-350 MHz		1 (0.35-1.05 GHz)	2 (0.95-1.76 GHz)		5a (4.6-8.5 GHz)			5b (8.3-15.4 GHz)	
Freq. (GHz)	0.3		0.6	1.4	1.6	4.8	6.7	8.4	12.2	15.0
AA2 (Jy)	No VLBI beam available		12.5	5.5	5.5	5.6	6.2	6.8	8.5	10.2
AA* (Jy)	18.3	13.5	6.3	2.7	4.4	4.6	5.1	5.6	7.0	8.5
AA4 (Jy)	16.3	9.0	4.6	2.2	3.1	2.7	3.0	3.3	4.1	4.9

Numerically, they are also the weighted continuum sensitivity (in uJy/beam) from the SKA Sensitivity Calculator using BW: 0.05 GHz, Time: 10000 s, Natural weighting, EL: 45 deg, system efficiency: 0.9.

References: (1) SKA-MID Sensitivity Calculator User Guide, (2) Anticipated SKA1 Science Performance


2. VLBI with the SKA-Mid at Ku band

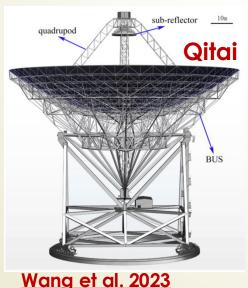
2.1 Unique advantages


- Providing the highest resolution (up to ~1 mas) for SKA-VLBI users to study innermost jets, cosmic transients, etc. (<u>Paragi et al. 2015</u>)
 - The longest baseline: 10610 km between SKA-Mid and Tianma65.
- Having very wide observing bandwidth available for deep imaging observations up to 64 Gbps (8 GHz bandwidth per pol.) and powerful self-calibration on sources of a few mJy.
 - VLBI image sensitivity is also dominated by the SKA-Mid and a few big dishes.
- Best observing band for the target sources close to the Galactic plane because of significantly less scattering broadening effect, i.e. $\theta_{\text{scatter}} \propto \lambda^2$ and $\theta_{\text{obs}} \approx sqrt(\theta_{\text{scatter}}^2 + \theta_{\text{source}}^2)$, for point-like sources.
 - Example: SKA-VLBI astrometry on Galactic radio stars or masers at 12.2 GHz (e.g. Green et al. 2015).
 - Note that SKA Band 6 (15.3–50 GHz) receivers (<u>Conway et al. Memo 20-01</u>) are not funded for the SKA-Mid AA*.

2.2 Current status and future expansion

- Europe, Asia and Africa
 - EVN and EAVN: Not available because of limited stations.
 - VLBI stations available at Ku band
 - **Effelsberg** (100 m), **Tianma** (65 m) & **Yebes** (40 m).
 - Torun (32 m), Hartebeesthoek (25 m), Ibaraki (32 m) & Yamaguchi (32 m) at 12.2 GHz only.
 - **VGOS** (VLBI Global Observing System) telescopes (13 m), e.g. Onsala Twin telescope.
 - Upcoming stations
 - Kunming (40 m): Installing a Ku-band receiver this year.
 - **Thai National Radio Telescope** (TNRT 40 m): <u>Installing a 4.6−13.7 GHz recejver in 2026</u>.
 - ▶ VLBI Exploration of Radio Astrometry (VERA): <u>Developing 6-18 GHz receivers</u>.
 - MeerKAT (64 x 13 m dishes): Ordered 66 Band 5b receivers from MPIfR.
 - Intend to develop Ku-band receivers: Sardinia (64 m), Medicina (32 m), & Onsala (20 m).
 - Available new telescopes over next 5 years
 - Qitai 110-m and Jingdong 120-m radio telescopes in China.
 - Wetterstein Millimeter Telescope (WMT, 18 m), Botswana DZA and SKA-MPI dishes (15 m).
- Long Baseline Array (LBA) in the southern hemisphere
 - Parkes (64 m): Started a 4-16 GHz receiver project and available in 2027+. Ceduna at 12.2 GHz.
- VLBA+VLA+GBT: Available and installing 8–40 GHz receivers for the VLBA.

- Currently, 5 stations available at 12.2 GHz in the EVN.
- ~15 stations available for EVN+SKA-Mid observations at 12.2 GHz in 2030+.
- More stations available in Japan, Australia. 10+ VGOS stations might be also included in the EVN, the EAVN, the LBA, and the SKA-VLBI observations.



Major concern: As the NRAO did, it requires an agreement with Starlink to get a radio-quiet sky at 10.7–12.7 GHz.

3. Summary and outlook

- SKA-Mid and more new radio facilities would provide an unprecedented opportunity for us to perform the EVN and Global VLBI observations at Ku band.
- SKA-VLBI observations at Ku band allow astronomers to achieve high-sensitivity (~1 uJy/beam) and high-resolution (~1 mas) images, and extremely high astrometric precision (~1 uas).
- Welcome more stations to develop receivers at Ku band. Short VLBI tests will be organized to gain a complete view of the VLBI network performance at 12/15 GHz.

