Orchestrating low-frequency VLBI on LOFAR scales

Frits Sweijen

Durham University

21–25 Oct 2025

Veras gräsmatta, Chalmers, Gothenburg

${\bf Collaborators}$

Emmy Escott, Christian Groeneveld, Neal Jackson, Jurjen de Jong, Vijay Mahatma, Leah Morabito, James Petley, Roland Timmerman, Reinout van Weeren, Matthijs van der Wild and many others in the LOFAR-VLBI working group

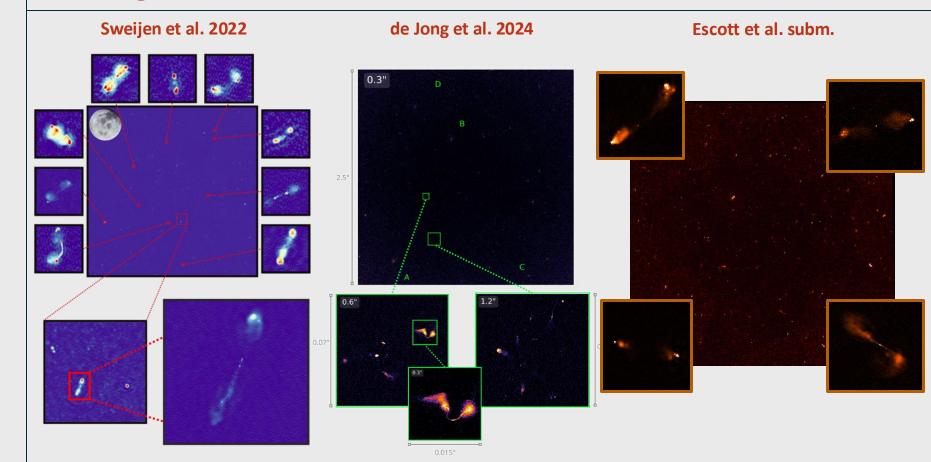
Setting the scene

Astrophysics and Space Science (2025) 370:19 https://doi.org/10.1007/s10509-025-04406-x

REVIEW

A decade of sub-arcsecond imaging with the International LOFAR Telescope

Leah K. Morabito^{1,2} · Neal Jackson³ · Jurjen de Jong⁴ · Emmy Escott¹ · Christian Groeneveld^{4,5} · Vijay Mahatma^{6,7} · James Petley^{1,4} · Frits Sweijen¹ · Roland Timmerman^{1,2} · Reinout J. van Weeren⁴


Received: 6 December 2024 / Accepted: 7 February 2025 / Published online: 24 February 2025 © The Author(s) 2025

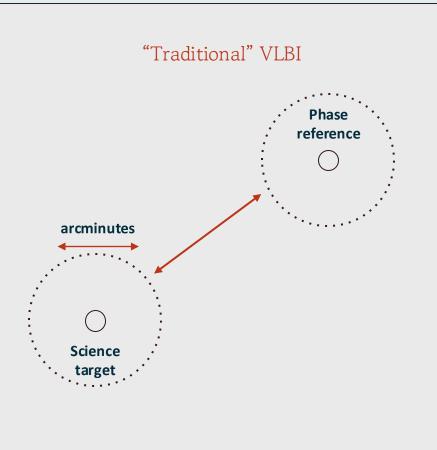
Abstract

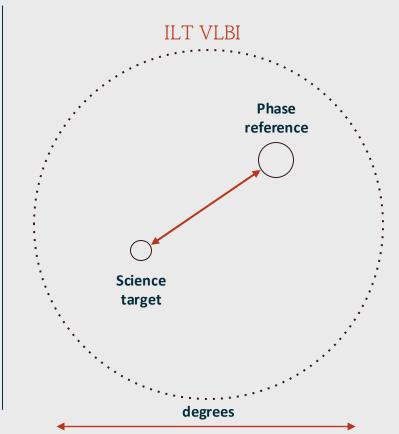
The International LOFAR Telescope (ILT) is a pan-European radio interferometer with baselines up to 2000 km. This provides sub-arcsecond resolution at frequencies of <200 MHz. Since starting science operations in 2012, the ILT has carried out observations for the state-of-the-art LOFAR Two-metre Sky Survey, which has 6 arcsec resolution at 144 MHz. Wide-area surveys at low frequencies, while scientifically productive, have to compromise on resolution. Sub-arcsecond imaging with the ILT has become more accessible over the last decade, thanks to efforts to build a publicly available pipeline using LOFAR-specific tools, which has resulted in a dramatic increase in the number of publications. The ILT's combination of resolution, field of view, and low observing frequency make it a unique instrument for a wide range of scientific applications, and it will remain unparalleled even in the era of the Square Kilometre Array Observatory. Here we provide an overview of the technical considerations and calibration methods sub-arcsecond imaging with the ILT. This is followed by a review of the unique capabilities unlocked by sub-arcsecond imaging with the ILT, using examples from the literature for demonstration. Finally we describe ongoing work including: surveying large areas of the sky at high resolution, going deeper in fields with excellent ancillary information, producing images of polarisation, and extending to lower frequencies (<100 MHz).

Keywords Radio astronomy · Extragalactic · High-resolution imaging · Radio surveys

Setting the scene

Outline


VLBI with the International LOFAR Telescope


Orchestration with the Common Workflow Language

PILoT: an end-to-end ILT VLBI pipeline

Future outlook & developments

VLBI with the International LOFAR Telescope

VLBI with the International LOFAR Telescope

"Traditional" GHz VLBI

Phase errors dominated by **tropospheric** and instrumental effects

Calibration is interpolated between science target and phase reference

Time and bandwidth **smearing is limited** due to always pointing on-source

Baseline coverage tends to be sparse -> very restricted spatial scales covered

ILT VLBI

Phase errors dominated by **dispersive ionospheric** effects

Calibration matches 1:1 between science target and phase reference

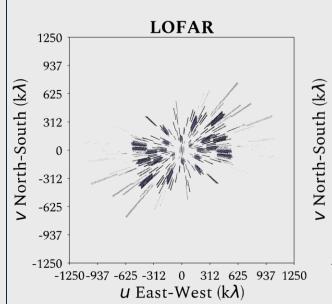
Time and bandwidth smearing set by data averaging (i.e. your storage capacity)

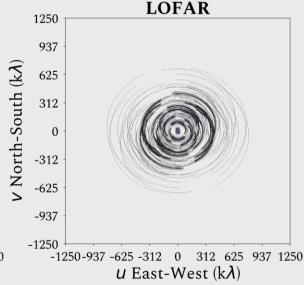
Spatial scales from ~1 deg to 0.3 arcsec sampled with a single observation

VLBI with the International LOFAR Telescope

8 hour synthesis

1 s integration time

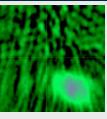

120-168 MHz


12.205 kHz channel resolution

~240 subbands of 195kHz

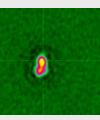
5 TB per observation

~6,000 observations needed (northern hemisphere)



Dear Frits, You are using 229.76% of your quota. Bright (>0.1 Jy) compact source to correct bulk ionosphere, primary beam variations

VLBI with the International LOFAR Telescope


Systematics and Dutch calibration **5 TB**

- Polarisation alignment, clock offsets and bandpasses for all stations
- Direction-dependent calibration of full NL-station FoV for NL stations
- High quality, deep 6" resolution sky image

Primary "delay" calibration 5 TB

and astrometry + polarisation (where possible) Self-calibration, no fringe fitting*

Direction dependent calibration 20-50

per facet

Faint (>0.025 Jy) secondary sources to correct differential ionosphere and primary beam variations

Calibrators form Voronoi tesselation for facet imaging

Imaging

~1-2" intermediate resolution image (~1.5 GB) ~0.6" intermediate-high resolution image (~10 GB)

~0.3" high-resolution image (~40 GB)

Large-scale orchestration

Managed clusters for distributed processing (e.g. Slurm)

- Parallelise over frequency chunks
- DD calibrators can be treated independently
- Facets can be imaged independently

Open standards for defining pipelines

- Decouple software from pipelining
- Easier integration with schedulers like Slurm
- Industry support

Common Workflow Language

A **declarative language** to describe inputs and outputs of "steps"

Per-step resource requirements

Supports containerised execution (Docker or Apptainer)

Used across many science areas

Open standard

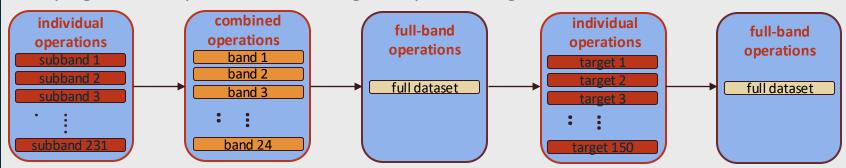
class: CommandLineTool cwlVersion: v1.2 id: aoflagging label: AO flagger doc: Runs the AO-flagging module of DP3. baseCommand: aoflagger inputs: - id: msin type: Directory inputBinding: position: 0 doc: Data to be processed in MeasurementSet format. outputs: - id: msout doc: Output MeasurementSet. type: Directory outputBinding: glob: \$(inputs.msin.basename) requirements: - class: InitialWorkDirRequirement listing: - entry: \$(inputs.msin) writable: true - class: ShellCommandRequirement - class: InlineJavascriptRequirement - class: Resource Requirement coresMin: 6 ramMin: \$(inputs.memory) hints: - class: Docker Requirement dockerPull: vlbi-cwl stdout: a oflag.log

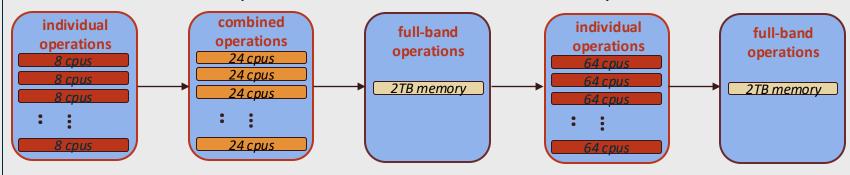
stderr: aoflag_err.log

An end-to-end pipeline

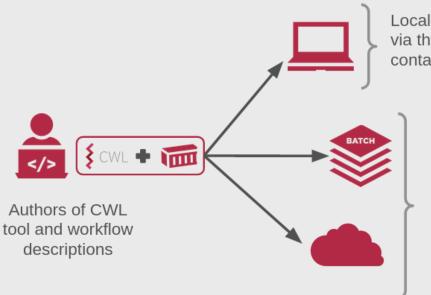
PILOT - Pipeline for the International LOFAR Telescope https://github.com/LOFAR-VLBI/VLBI-cwl van der Wild in prep.

Common Workflow Language as "definition glue"


Toil CWL runner for easy exploitation of Slurm clusters

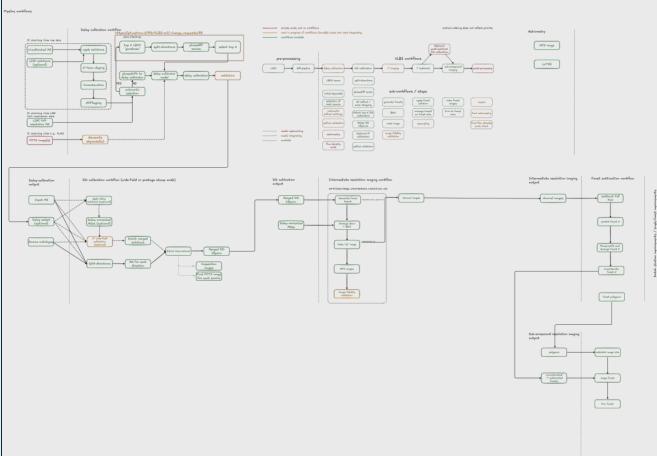


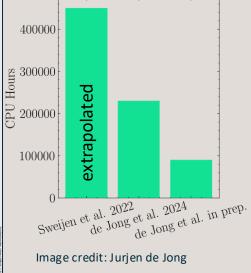
Common Workflow Language


Varying levels of parallelism throughout processing

Individual resource requirement can be scheduled efficiently with Toil

Large-scale orchestration


Local execution on Linux, macOS, and MS Windows via the CWL reference implementation (cwltool) and containers (e.g. Docker, uDocker, Singularity, podman)



Backends supported by various F/OSS CWL implementations

Image credit: CWL documentation

but.... it's complicated and expensive!

120,000 core hours per observation is still **156 days** on **32 cores!**

Furter optimisation still needed

Summarising & what's next?

This talk

- ILT VLBI pipeline is rapidly stabilising as an end-to-end pipeline
- Efficient resource usage with CWL and Toil

What's next?

- Profiling and optimisation: processing is stable and manageable, but still computationally expensive (see also next talk by Jurjen)
- Italy and Bulgaria stations will join with LOFAR2.0, creating baselines up to 2700 km
- LoTSS-HR: postage-stamp imaging of >10 mJy LoTSS sources
- iLoTSS: full FoV imaging high-resolution counterpart to LOTSS
- LOFAR2.0 Ultra-Deep Observation: ~3000 hours ILT imaging on EDF-N region

Thank you. Questions?

Frits Sweijen Durham University 21–25 Oct 2025 Veras gräsmatta, Chalmers, Gothenburg

Orchestrating low-frequency VLBI on LOFAR scales