Deploying and running services via OpenStack and Kubernetes at Chalmers e-Commons

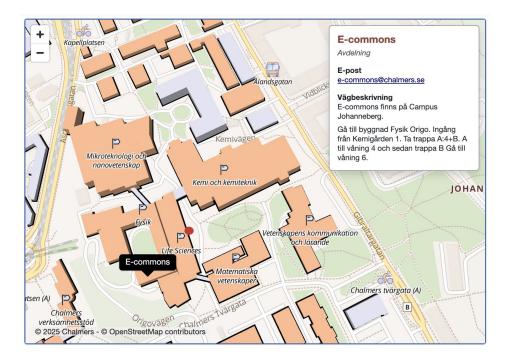
Network, Hardware, Storage and Software setup

We operate Data Center(s) and provide Services to Researchers - elnfra Group at Chalmers e-Commons

Presentation overview

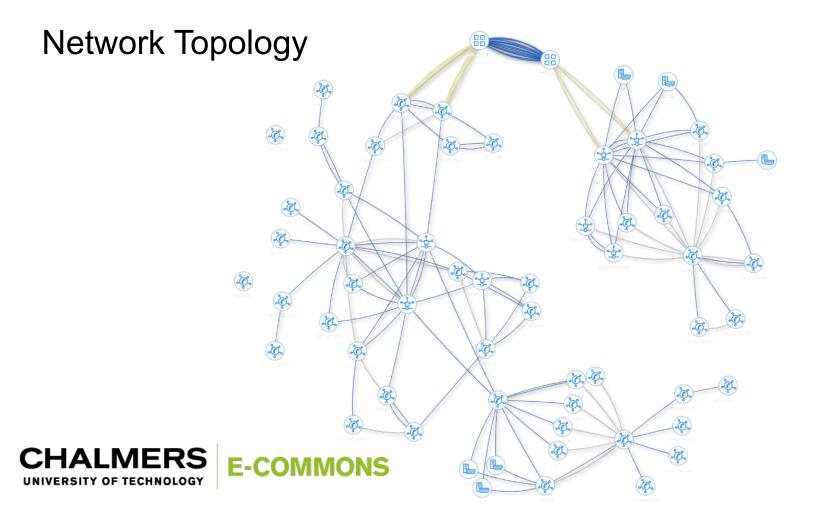
Introducing Infrastructure:

- Data Center
- Network resources
- Computing resources
- Storage resources


Introducing Services:

- Ceph Cluster
- HPC Cluster
- Openstack Cluster
- Kubernetes Cluster

Discussion and follow ups



Data Center(s) Overview

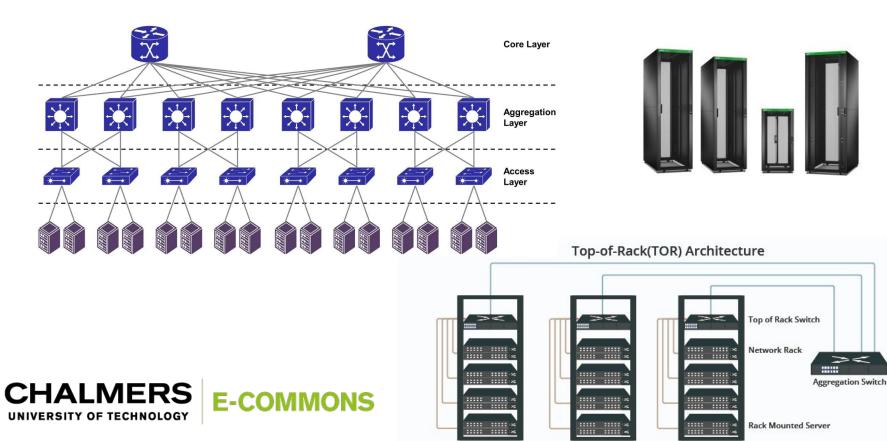
- MC2 (Alvis)
- KB (Vera Cloud)
- MV (extra)
- HPC2N (backup)
- 24/7
- power, dual-power, UPS
- cooling and environmental controls
- floor space and cable management
- physical security access controls
- redundancy and disaster recovery

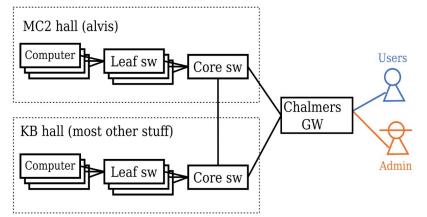
Data Center Servers

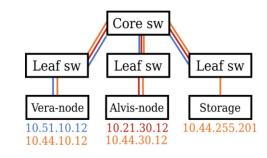
- Servers (Compute Resource)
 - Rack-mount servers

CHALMERS E-COMMONS

UNIVERSITY OF TECHNOLOGY



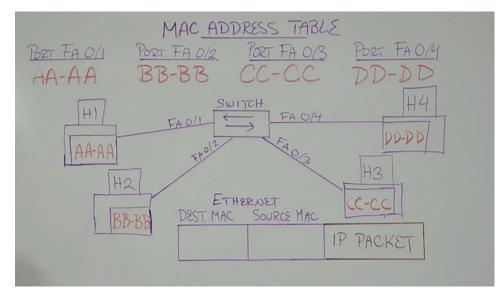


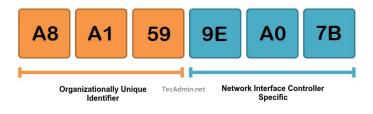

3-Tier Data Center Network Architecture

Data Center(s) networking

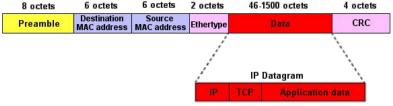
- o Layer 1/2/3 networking;
- o We have rather simple setup (mostly layer 2);

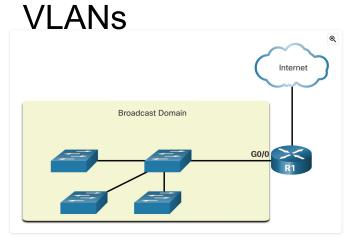
Vera: 10.51.xx.yy Alvis: 10.21.xx.yy Mimer: 10.44.xx.yy

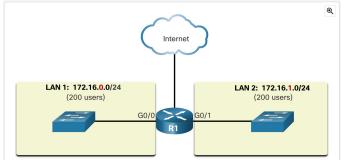

- o generally no router only level-2 switches;
- o separation with VLAN;
- o convention: consistent naming and IP assignment;


Credit: Yunqi

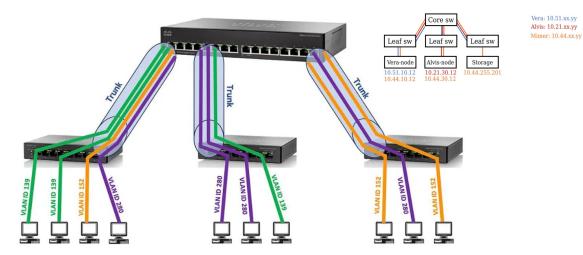
MAC

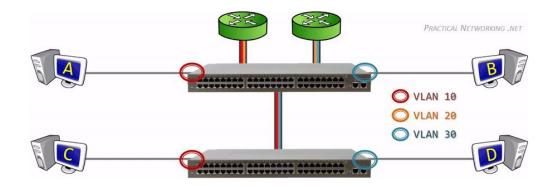

Layer 2: Data Link Layer


Media Access Control Address



- **Ethernet** is the protocol of choice in LAN
- Each Ethernet NIC has MAC address
- Ethernet Frame has source and destination MAC address
- Ethernet Switch operates on L2 level
- •




E-COMMONS

CHALMERS

UNIVERSITY OF TECHNOLOGY

Traffic arriving on a switch port assigned to one VLAN will only ever be forwarded out another switch port that belongs to the same VLAN – **a switch will never allow traffic to cross a VLAN boundary**.

Data Center Servers

- Servers (Compute Resource)
 - Rack-mount servers
 - Blade servers
 - Tower server
 - Mainframes

Power Supply CPU & Heat Sink PCIE Card **Data Center Servers** Applications Personality CPU Hard Disk Brains Memory Linux I/O Bus **Operating Systems** Nervous system Heart Enables components within the server to communicate with one another Network Interface Form Factor Senses ALVIS Enables connection to Rack/Tower/Blade the network Skeleton RAM Power supply Short term Memory Muscle Hard Drives / RAID Server Cooling Fans Long term Memory Temperature

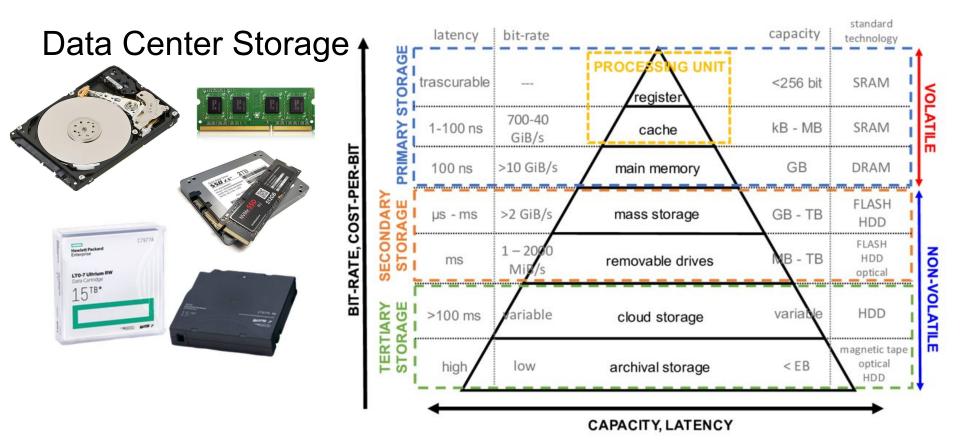
Data Center Servers

Data Center CPU + GPU servers

Most scientific computing environments use a combination of CPU + GPU servers.

CPU handles orchestration, I/O, and non-parallel logic while GPU accelerates compute-heavy sections like linear algebra, simulations, or ML.

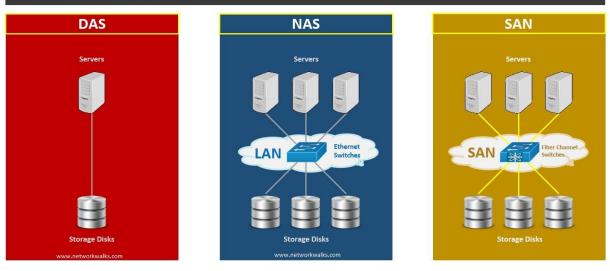
	CPU Servers	GPU Servers
Architecture & Parallelism	General-purpose processors with a few (typically 8–64) powerful cores.	Designed with thousands of smaller, simpler cores (e.g., 7,000+ cores per GPU).
	Optimized for sequential tasks and complex logic.	Excellent at massive parallelism —performing the same operation across large data sets (SIMD: Single Instruction, Multiple Data).
	Handle a wide range of workloads, from file systems to databases to simulation logic.	
Best-Suited Tasks	Works best for tasks that are control-heavy , branching-intensive , or sequential. Examples : Data management, Control flow in simulations, Pre/post-processing of data.	Excels in highly parallelizable computations. Examples : Matrix algebra, Molecular dynamics, Climate modeling, Finite element analysis, Machine learning and AI.


Data Center CPU + GPU servers (2)

Most scientific computing environments use a combination of CPU + GPU servers:

- **CPU** handles orchestration, I/O, and non-parallel logic.
- **GPU** accelerates compute-heavy sections like linear algebra, simulations, or ML.

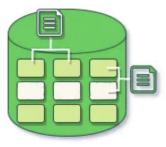
	CPU Servers	GPU Servers
Performance & Efficiency	Slower for massively parallel tasks but more versatile	Offers order-of-magnitude speedups (10×, 100×+) on suitable tasks
	Often bottlenecked when handling workloads like deep learning or large-scale numerical simulation	More energy-efficient for parallel workloads but needs well-optimized code to fully utilize.
Programming & Ecosystem	Easier to program using traditional languages (C/C++, Fortran, Python).	Requires specialized programming (CUDA, OpenCL, HIP, etc.).
		Increasingly supported in scientific libraries (TensorFlow, PyTorch, cuBLAS, etc.).



Data Center Storage

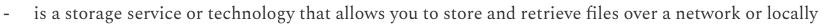
- Storage Configurations
 - DAS
 - NAS
 - SAN
 - Tape Libraries

STORAGE TYPES COMPARISON



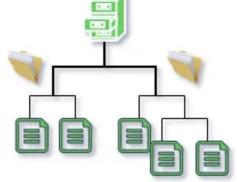
Block Storage ...

- came first, in the 1960s
- are HDDs are SSDs that are physically attached to servers
- presents the raw blocks to the server as a volume
- it is presented as a raw device (a block device)
- can be used :
 - with filesystem
 - raw block storage is first **partitioned**
 - partitioning defines logical sections of the storage
 - partition is then **formatted** (Linux: ext4, xfs, btrfs Windows: NTFS, FAT32, exFAT)
 - without filesystem
 - Some applications use raw block storage directly (e.g., databases or virtual machine disk images, high-performance applications) for performance reasons (raw device mapping or block device access)



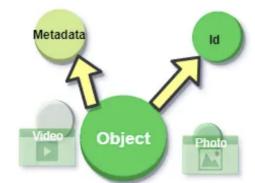
File Storage ...

- is built on top of block storage
- is a file level storage
- stores data as files organized in a hierarchical structure (directories, subdirectories)
- is not to be confused with filesystem
 - It organizes data blocks into files and directories on a disk or partition.



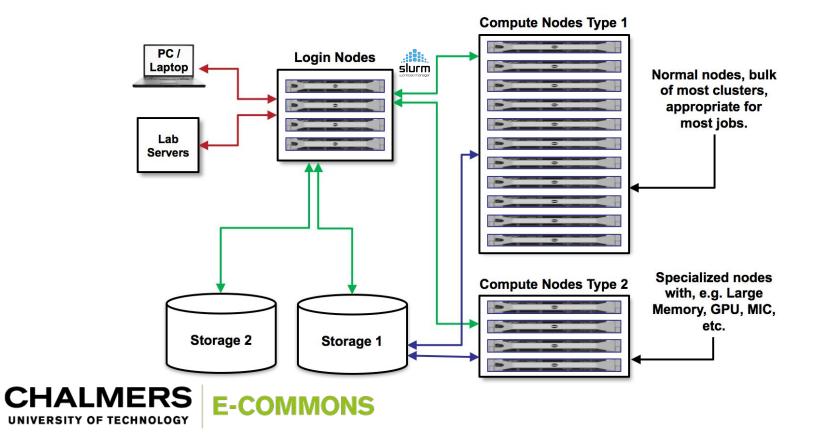
- simplicity makes it a great solution for sharing a large number of files and folders within an organization
- provides access to files (with metadata) and handles file-sharing, permissions, locking, etc
- in most cases, especially in network-based file storage (like NFS, SMB, NAS), file storage is associated with a file server
- when accessed locally the OS itself plays the role of managing file storage

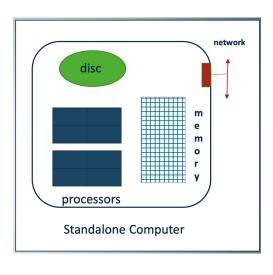
Think of file storage as the full system that offers file access and storage capabilities, often across a network.

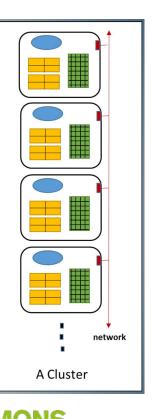


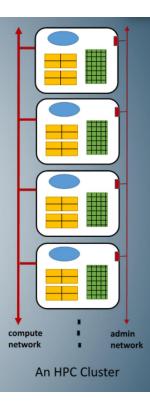
Object Storage ...

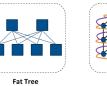
- came last, New Kid On The Block
- no hierarchical directory structure
- stores all data as objects in a flat structure
- designed for **unstructured data** such as media, documents,
- logs, backups, application binaries and VM images
- does deliberate tradeoff to sacrifice performance for high durability, vast scale, and low cost
- relatively "cold" data (warm?) and is mainly used for archival and backup
- Data access is normally provided via a RESTful API, relatively slow compared to other storage types
- When a portion of the file is updated, an entire object needs to be updated, unlike in block storage, where only the corresponding block is updated.
- Hence Object store is well suited for the write-once and read many applications (static content, photo or video repository).


High Performance Computing Overview

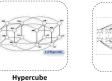

High-performance computing (HPC) is the use of supercomputers and computer clusters (+ fast networks + massive fast storage) to solve advanced and large computation problems.




HPC Cluster



HPC and Network



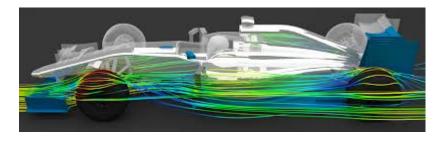
Torus

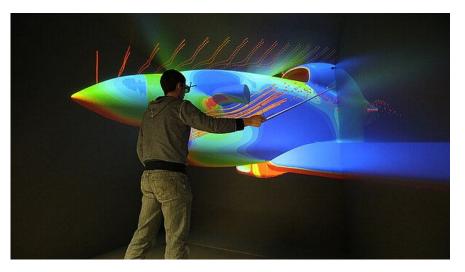
Dragonfly

HyperX

CHALMERS E-COMMONS UNIVERSITY OF TECHNOLOGY

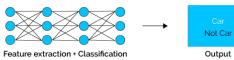
HPC and Storage

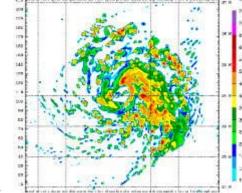

	Path	Intended use	Hardware partition used
User home	/users/ <username></username>	User home directory for personal and configuration files	LUMI-P
Project space	<pre>/project/<project></project></pre>	Project home directory for shared project files	LUMI-P
Project scratch	<pre>/scratch/<project></project></pre>	Temporary storage for input, output or checkpoint data	LUMI-P
Project flash	/flash/ <project></project>	High performance temporary storage for input and output data	LUMI-F


	Quota	Max files	Expandable	Retention	Billing rate
User home	20 GB	100k	No	User lifetime	NA
Project space	50 GB	100k	Yes, up to 500GB	Project lifetime	lx
Project scratch	50 TB	2000k	Yes, up to 500TB	Project lifetime*	lx
Project flash	2 TB	1000k	Yes, up to 100TB	Project lifetime*	Зх

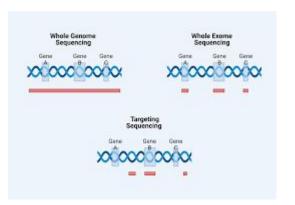
	Quota	Max objects	Expandable	Retention	Billing rate
Object storage	150 TB	500M (500k/bucket)	Yes, up to 2.1 PB	project lifetime	0.25x

HPC Applications





Machine Learning

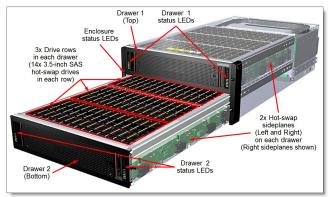

Lat In Tel 1 10.1 141.8

de i

-

1 1 1 1 1

Input

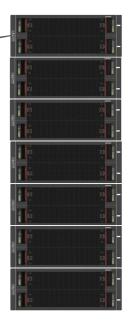

is a **distributed storage system** designed to provide excellent performance, reliability, and scalability. Ceph is often used for **object storage, block storage, and file systems**.

Mimer-Ceph

/cephyr file-system

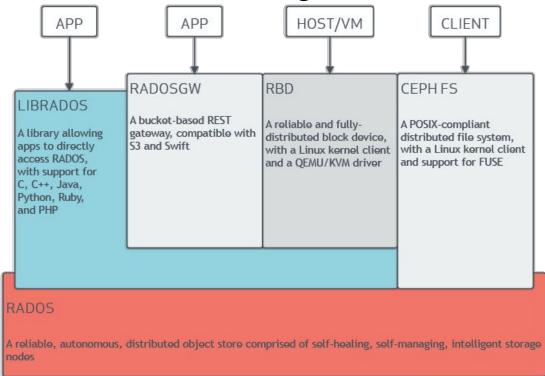
UNIVERSITY OF TECHNOLOGY

CHALMERS E-COMMONS


*

*

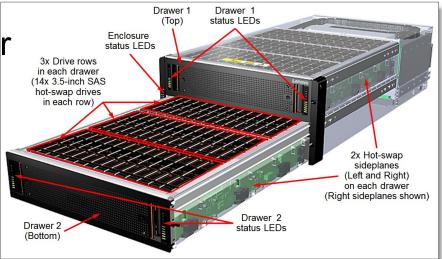
*


14 Lenovo SR630v2 servers

- 2 x Intel Xeon Silver 4314 16c 2.3GHz Processors, 256 GB memory
- 2 x M.2 5300 480GB SSD (Mirrored for OS)
- 3 x 800GB NVMe PCIe 4.0 (for Ceph journal and database)
- 1 x Mellanox ConnectX-6 100 Gb 2-port Ethernet adapter
- 1 x Mellanox ConnectX-6 10/25 Gb 2-Port Ethernet adapter

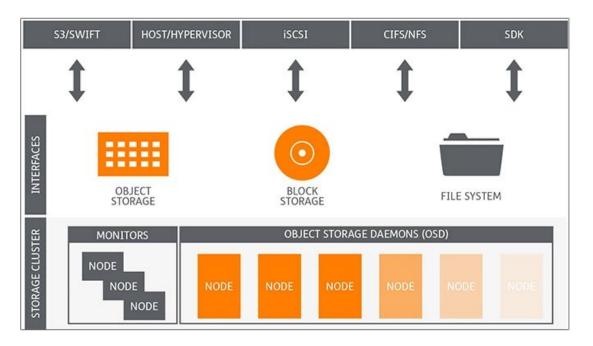
7 Lenovo D3284 JBOD 84x 14TB SAS HDD Drives

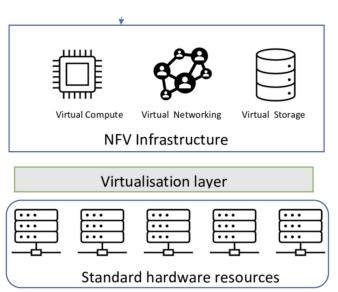
Ceph as Software Defined Storage



Mimer - Ceph as part of Mimer

All-flash tier; 14 SR630v2 servers with: 2 x Intel Xeon Gold 6338 32c 2.0GHz Processor, 384 GB memory 2 x M.2 5300 480GB SSD (Mirrored for OS) 10 x Intel P5500 7.68TB NVMe PCIe 4.0 2 x Mellanox ConnectX-6 HDR Infiniband adapters 1 x Mellanox ConnectX-6 Lx 10/25GbE Ethernet adapter A total of 1075 TB raw / 740 TB usable capacity

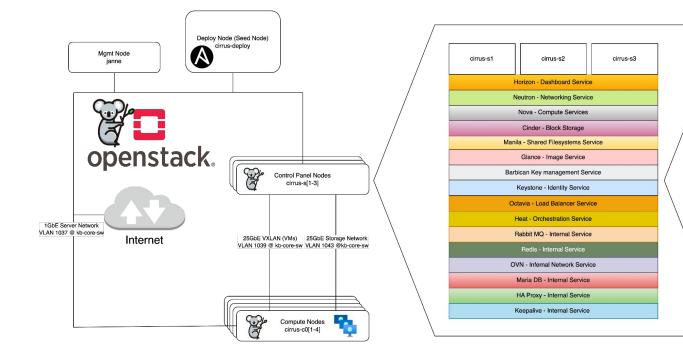

Bulk tier; 14 SR630v2 servers:


- 2 x Intel Xeon Silver 4314 16c 2.3GHz Processors, 256 GB memory
- 2 x M.2 5300 480GB SSD (Mirrored for OS)
- 3 x 800GB NVMe PCIe 4.0 (for Ceph journal and database)
- 1 x Mellanox ConnectX-6 100 Gb 2-port Ethernet adapter
- 1 x Mellanox ConnectX-6 10/25 Gb 2-Port Ethernet adapter
- Connected (2 servers to one JBOD) to a
- D3284 JBOD with 84x 14TB SAS HDD Drives

A total of 8232 TB raw / 6860 TB usable capacity

Virtualisation of resources

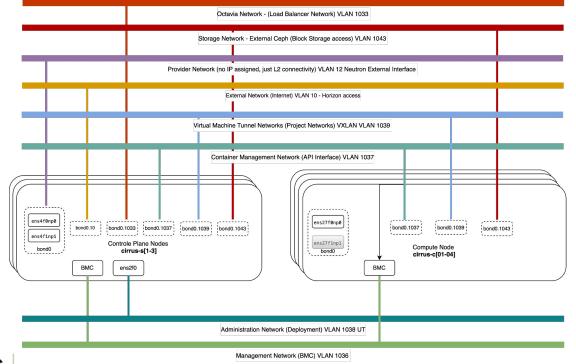
OpenStack Overview


OpenStack is a cloud operating system that controls large pools of compute, storage, and networking resources throughout a datacenter, all managed and provisioned through APIs with common authentication mechanisms.

OpenStack Cluster

CHALMERS E-COMMONS

UNIVERSITY OF TECHNOLOGY



OpenStack Components (or OpenStack Services)

Com	pute		Shar	ed Services		
*	NOVA	Compute Service	*	KEYSTONE	Identity service	
and the second second	ZUN	Containers Service	PLACEMENT Placement service		Placement service	
Stora	0.00		4	GLANCE	Image service	
51012	ige			BARBICAN	Key management	
R	SWIFT	Object store	Web	o frontends		
T	CINDER	Block Storage				
10	MANILA	Shared filesystems	5×8	HORIZON	Dashboard	
Netw	vorking			SKYLINE	Next generation dashboard	
@	NEUTRON	Networking				
	ΟCTAVIA	Load balancer				
12	DESIGNATE	DNS service				

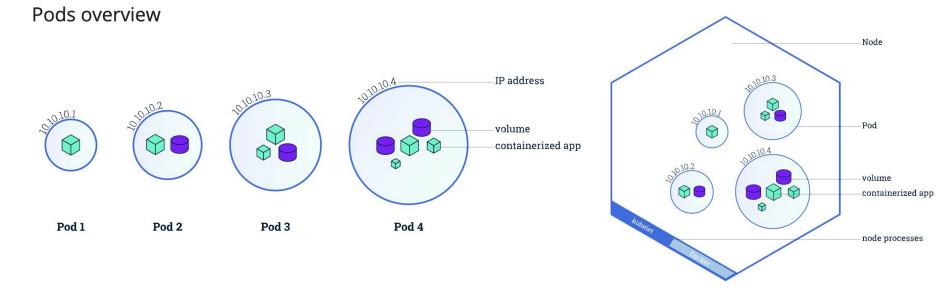
OpenStack Network (to "rule" them all)

E-COMMONS

OpenStack Project

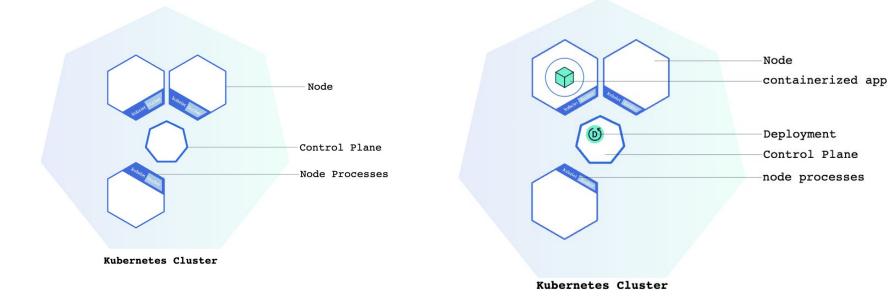
Horizon walk-through

Kubernetes (K8s) Overview



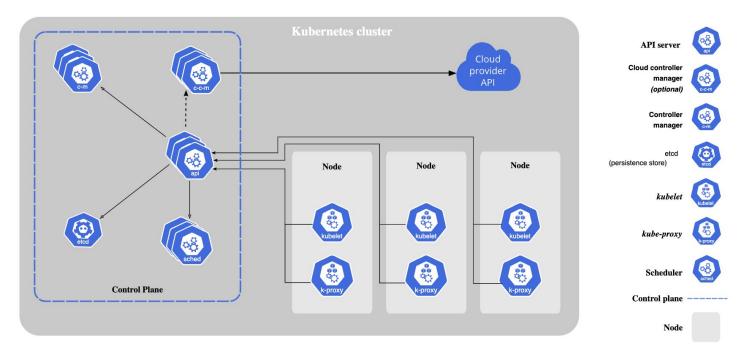
Kubernetes is a production-grade, open-source platform that orchestrates the placement (scheduling) and execution of **application containers** within and across computer clusters.

Kubernetes Components


Nodes overview

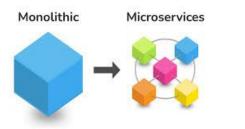
Kubernetes Cluster

Cluster Diagram

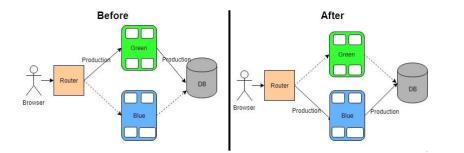


Kubernetes Cluster

CLUSTER	NODE POD Container Container POD Container POD Container	Pod 1 container 1 container 2 Pod 2 container 1
Control plane	NODE POD Container POD Container POD Container POD Container	container runtime kubelet kube-proxy Worker Node 1



Kubernetes Components Overview (1)


Kubernetes

Kubeflow

Summary

HPC CPU Cluster

Good for: Scientific simulations (e.g., climate models, physics) Large-scale mathematical computations Code with complex branching and low parallelism **Strengths**: Precise, flexible, scales well with many CPU cores

HPC GPU Cluster

Good for: Deep learning / AI training Image and video processing Highly parallel workloads (e.g., molecular dynamics) **Strengths**: Massive parallelism,

faster than CPUs for data-heavy tasks

OpenStack

Good for: Building private or hybrid clouds Managing virtual machines, storage, and networking Large-scale, enterprise cloud deployments **Strengths**: Full IaaS control

Kubernetes

Good for:

Running and managing containerized applications (e.g., Docker) Microservices architecture, DevOps, CI/CD Scaling, self-healing, and automating app deployment **Strengths**: Portability, resilience, automation at scale

