
OS deployment
at Chalmers e-Commons

Physical setup, management, PXE boot OS deployment

Design spec and prepwork

● Before any parts arrive we
○ Write down host list with all IPs
○ Plan for where to rack them up and how to place them
○ Send to integrator for preparing management and labeling.
○ Create dsh groups
○ Create conman lists of hosts
○ Icinga nodes
○ Generate passwords

Hardware installation

● Follow prepared design documents with all IPs and physical placement
○ Prepare PDUs and power on sockets. Add to UPS iff desired.

● Switches
○ Connect via serial console and configure IP and SSH access over management port
○ Connect management ports to central management network
○ Configure (C-LAG) uplinks and connect all other cabling

● Servers
○ Power should be spread evenly across all phases. Power on socket groups
○ Connect management and cabling
○ Configure static management IPs
○ Adjust cooling and seal up any gaps for optimal airflow

● Labeling

BMC (baseboard management controller)

● Essential for managing machines remotely.
○ Very vendor specific
○ Disable risky features like sharelink (dangerous to expose to the host OS)
○ Set up static IPs
○ Enable SNMP
○ Enable IPMI
○ Enable redfish
○ Enable health checking protocols
○ Hostname (visible over LLDP and web interface)

● More possibilities
○ KVM
○ rsyslog
○ Boot from virtual media

Network configuration

● Management
○ Preferably physically separate 1GbitE network (SFP ports bridging up to core switches)
○ Very simple configuration, sometimes unmanaged, access (untagged)

● Bring out all the necessary VLANs
○ M/C-LAG bonds where appropriate
○ Tagging

● PXE deployment
○ Typically (always) require untagged VLAN
○ Not too happy about bonds either. Use of “lacp force-up” modes may circumvent it.
○ Some models can’t PXE boot on mellanox cards (BIOS doesn’t understand them).

#
interface 25GE1/0/1
 eth-trunk 1
 device transceiver 25GBASE-COPPER
#
interface 25GE1/0/2
 eth-trunk 1
 device transceiver 25GBASE-COPPER
#
interface Eth-Trunk1
 port link-type hybrid
 port hybrid pvid vlan 1035
 port hybrid tagged vlan 1033 1043 to 1044
 port hybrid untagged vlan 1035
 mode lacp-dynamic

- name: "bond0: setup bond"
 nmcli:
 type: bond
 conn_name: bond0
 autoconnect: yes
 state: present

- name: "bond0: add bond-slaves"
 nmcli:
 type: bond-slave
 conn_name: '{{ item }}.bond0'
 ifname: '{{ item }}'
 master: bond0
 state: present
 with_items:
 - 'ens801f0np0'
 - 'ens801f0np1'

- name: "bond0: add bond-vlans"
......

Switch config Ansible (after we have the OS)

Passwords

● Before even using them we store it all in keepassx database
○ Host passwords
○ Management network passwords
○ Various services (adding the links as well)
○ Keys / access tokens

● Currently just a shared keepassx database. Easiest to bulk update and
upload than to trickle in passwords.

○ Download the latest
○ Add all new things
○ Upload new (move date stamped old database to backup directory)
○ Inform everyone in the chat to grab the new one

Management

● Needed before any deployment
○ Serial console (managed via conman, which logs them as well)
○ IPMI (via handy “ipmi” script to simplify rebooting of nodes and such using hostlists)

■ Using hostlist, sets cipher, password
○ Vendor tools like onecli, kmscli, sum for setting UEFI parameters, boot order etc.

■ Save the settings of nodes. Handy for restoring after motherboard replacements
■ Also save license keys for BMCs
■ Diff and make sure all the desired settings are present, SMT, Numa, power, security (no

management accessible via OS!) and more
○ Need to be able to change boot order of machines (at least “PXE next boot”)

● Also set up any /etc/dsh/groups/ for accessing the machines conveniently

PXE deployment

● Currently using cobbler to manage distros profiles and systems
○ Cobbler is half dead, looking for replacement
○ Manages PXE boot images and DHCP via dnsmasq and kickstart files
○ Almost only using anaconda kickstarts (RHEL based method)
○ Intentionally minimal deployment strategy

■ OS drive partitioning
■ OFED driver installation (else network cards change names which is annoying)
■ Minimal packages
■ root ssh key from Janne

○ Using simple scripts that sets PXE boot on + icinga downtime + reboot

Make handy scripts to work many nodes
$ ipmi dev-cirrus-c[01-12] power status | pshbak -c

dev-cirrus-c[01-12]

Chassis Power is on

$ schedule_downtime.py dev-cirrus-c12
$ reinstall_system.sh dev-cirrus-c12
$ manycli cirrus-c[01-04] config restore --file=cirrus.cfg
$ pdsh -g cirrus_dev uptime

PXE - DHCP

● Machines set to boot with PXE first
● UEFI/BIOS will request DHCP for every interface

○ Slows down booting: disable everything we can in UEFI keeping only IPv4 PXE boot on the
correct interface if possible

● Monitor DHCP requests on Janne
○ systemctl status dnsmasq -n 99
○ May 08 08:13:23 janne dnsmasq-dhcp[3043581]: DHCPREQUEST(eth11) 10.44.255.2

bc:24:11:57:c5:11

● No requests coming through? Debugging during PXE boot is a pain in the ass
○ Just manually deploy a node, log in via conman and bring up network manually to test things

out. Usually missed something some switch configuration, like VLAN or lacp-force-up

Anaconda kickstart file (slightly trimmed)
repo --name=c3se-base --baseurl=http://$server/repo/rocky9/base/
repo --name=c3se-appstream --baseurl=http://$server/repo/rocky9/appstream/
repo --name=c3se-mlnx --baseurl=http://$server/repo/rocky9/mlnx/
%packages --ignoremissing
@core --nodefaults

rdma-core
rdma-core-devel
mlnx-ofa_kernel
mlnx-ofa_kernel-devel
mlnx-ofa_kernel-modules
-firewalld
-iwl*firmware
-ModemManager-glib
%end

%post
dracut -f # maybe needed when using mlnx-ofa_kernel-modules
hostnamectl set-hostname $hostname
$SNIPPET('post_install_kernel_options')
$SNIPPET('mgmt_authorized_pubkey')
$SNIPPET('autoinstall_done')
%end

keyboard us
lang en_US.UTF-8
timezone --utc Europe/Stockholm
text
skipx
firstboot --enable
reboot

#raw
rootpw --iscrypted 6....
#end raw

firewall --disabled
selinux --disabled

zerombr
clearpart --all --initlabel
bootloader --location=mbr --append="edd=off"
part /boot/efi --fstype=vfat --size=128
part /boot --fstype ext4 --size=1024
part / --fstype ext4 --size=18432
#if $use_weka == 'True'
part /opt/weka --size=30720
#end if
part /tmp --fstype ext4 --size=1024
part /local --size=100 --grow

Ansible - generally applicable configurations:

● Networking, static IPs, bond, VLANs
● Hostname, timezone
● Network tuning + tuned - Larger buffer sizes and such
● arp-cache - OS defaults are quite limited
● LLDP - essential for network discovery and debugging
● Icinga health checks, mcelog
● Firewall
● Rsyslog
● (TSM backups)

- name: Enable firewalld
 service:
 name: "firewalld"
 enabled: yes
 state: started

- name: Look up public IP from /etc/hosts
 command: gethostip -d {{inventory_hostname}}-c3se
 delegate_to: localhost
 register: public_ip4
 check_mode: no
 changed_when: False

- name: Setup external interface
 nmcli:
 ifname: 'external'
 conn_name: 'external'
 state: present
 type: vlan
 ip4: '{{ public_ip4.stdout }}/16'
 gw4: '{{ gateway }}'
 ip6: '{{ ipv6_address }}/64'
 gw6: '2001:6b0:2:2010::1'
 vlandev: "{{ interface_public.split('.')[0] }}"
 vlanid: "{{ interface_public.split('.')[1] }}"
 zone: public
 dns4:
 - 129.16.1.53
 - 129.16.2.53
 conn_reload: True

Inventory (Netbox)

● Rack-arrangement (add to Netbox by hand)
● MAC addresses and link information (ansible)
● Switch configs backup (ansible)
● BMC and BIOS configurations (scripts, still

vendor-specific)

Health checks

● Icinga for health checks
○ Ping
○ SSH
○ Probe management for general hardware health events, fans,

cooling, temperatures
○ Disk checks
○ systemd unit failures
○ Firewall
○ Updates
○ Certificates
○ NTP
○ Application specific scripts for health checks, e.g. ceph status

● Set alerts in chat if deemed urgent

Icinga example
object Endpoint "cirrus-s1" { host = "cirrus-s1" }
object Zone "cirrus-s1" {
 endpoints = ["cirrus-s1"],
 parent = "mgmt"
}
object Host "cirrus-s1" {
 import "lenovo-cirrus-host"
 address = "cirrus-s1"
 vars.mgmt_ip = "cirrus-s1-mgmt"
 vars.docker_containers = [
 "mariadb",
 …
]
}

apply Service "firewalld" {
 import "generic-service-5min"
 groups += ["Daemons"]
 check_command = "systemd_service"
 vars.unit = "firewalld"
 vars.slack_notifications = "enabled"
 assign where host.name in ["cirrus-s1", "cirrus-s2", "cirrus-s3"]
 command_endpoint = host.name
}

apply Service "Failed services" {
 import "generic-service-5min"
 groups += ["Health"]
 check_command = "failed_services"
 assign where regex("^cirrus-s\\d\\d", host.name)
 assign where regex("^cirrus-c\\d\\d", host.name)
 assign where "Foo" in host.groups
 command_endpoint = host.name
}

Metrics

1. Collect metrics
2. ???
3. Profit!

Maintenance

● Basic service doesn’t stop after deploy
○ OS security updates

■ reboot with kexec helper script speed things up tremendously
○ Firmware updates (BMC, UEFI, drives, network devices)

■ More custom helper scripts to run in parallel (tmux windows) across dozens of machines
○ OS security updates

■ Should at least have semi-automated procedures for updates
● Procedures for downtime and service
● Prolonging service contracts

Backup slides after this one

Pictures

Alternatives provisioning services

● The overall procedure would be similar:
○ Setup management network
○ Setup server for PXE-boot
○ Configure machines with ansible or alike

● Differences
○ Image with cloudinit & configdrive (as opposed to kickstart files), e.g. ironic, matchbox;
○ Expose deployment to other components of k8s, e.g. metal3, MAAS.

