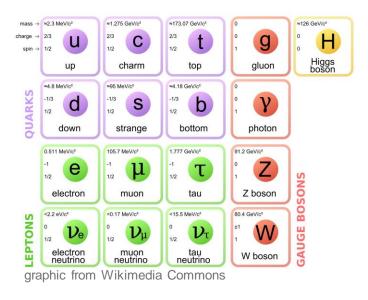
Dalitz Plot Analysis of charmless B Meson Decays at the Belle II Experiment

Markus Reif

Annual Swedish Nuclear Physics and SFAIR Meeting 2025

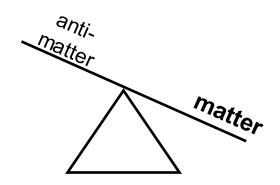
30 October 2025



What do we have and what do we want?

What we have

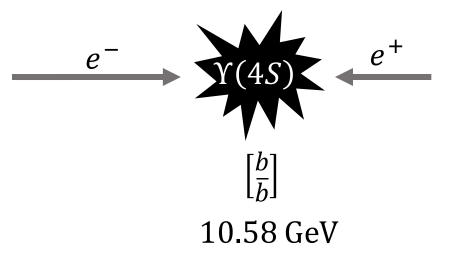
Standard Model to describe microscopic world

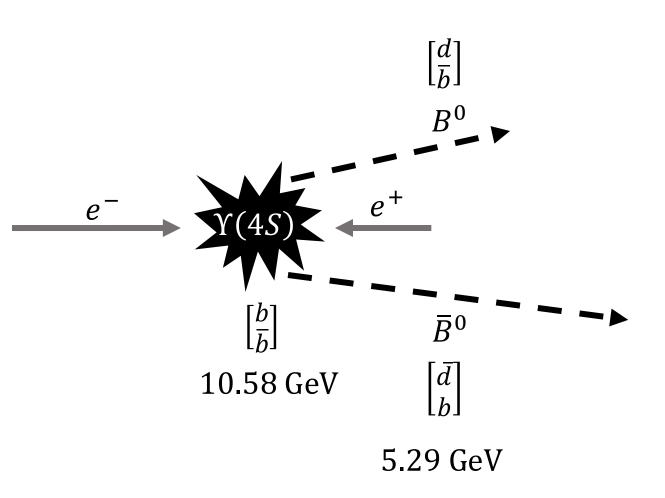


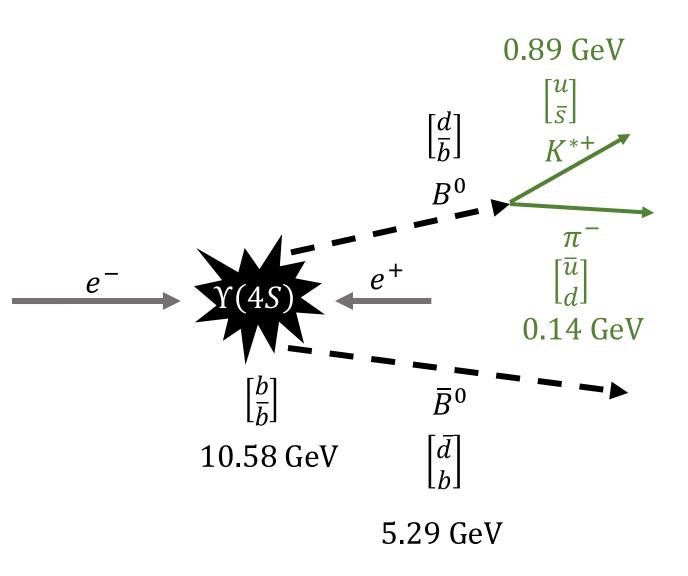
make predictions

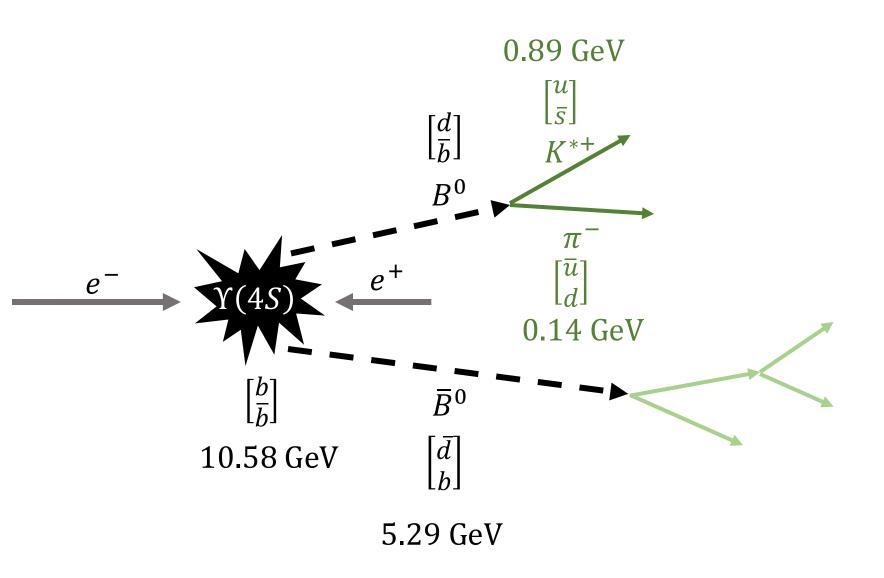
→ so far confirmed in experiments

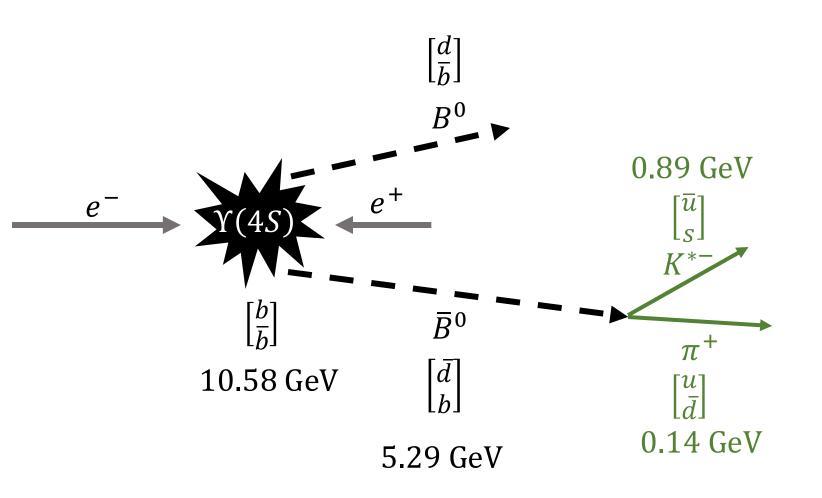
Problems

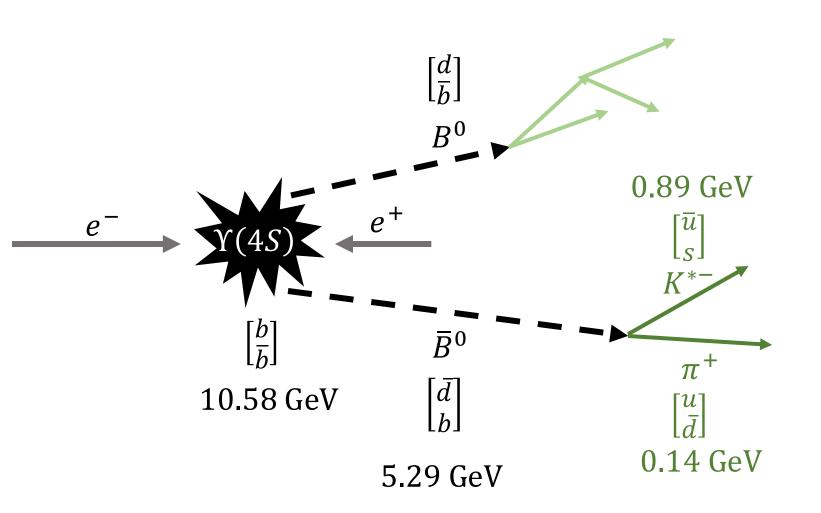

- gravity not included
- dark matter?
- matter anti-matter asymmetry

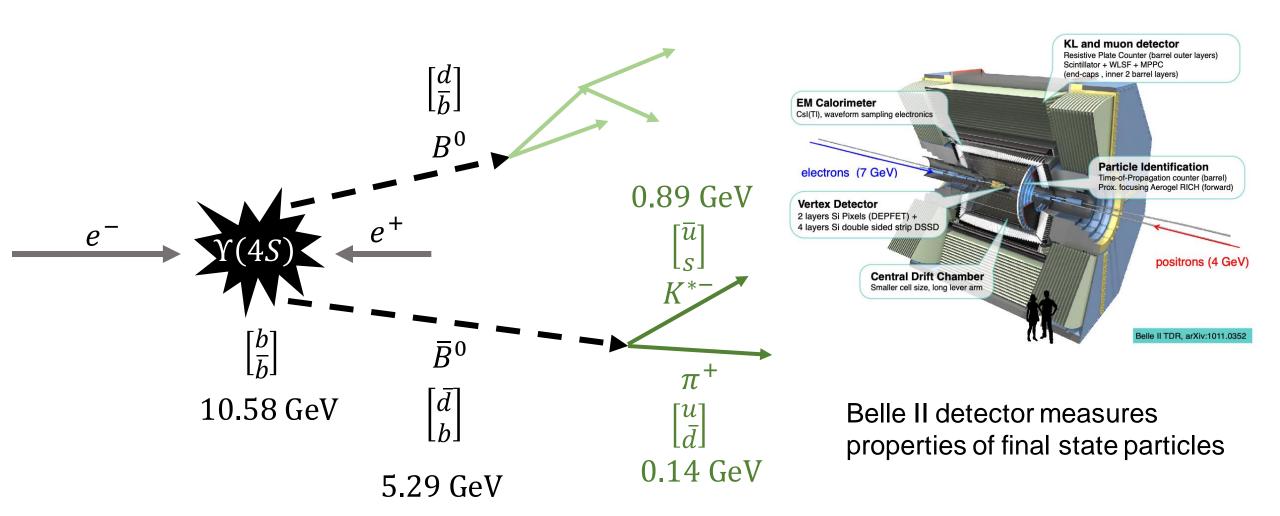



What we want




New Physics beyond Standard Model



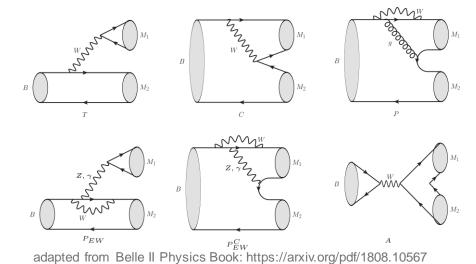


> want to compare experimentally measured parameter with theory prediction

> want to compare experimentally measured parameter with theory prediction

Experiment:

branching fraction:
$$\mathcal{B} = \frac{N(\bar{B}^0 \to K^{*-}\pi^+) + N(B^0 \to K^{*+}\pi^-)}{N(\operatorname{total}\bar{B}^0) + N(\operatorname{total}B^0)}$$


direct CP-violation:
$$\mathcal{A}^{CP} = \frac{N(\bar{B}^0 \to K^{*-}\pi^+) - N(B^0 \to K^{*+}\pi^-)}{N(\bar{B}^0 \to K^{*-}\pi^+) + N(B^0 \to K^{*+}\pi^-)}$$

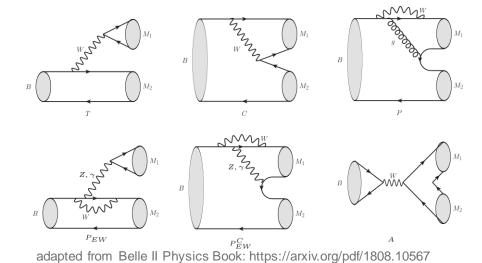
want to compare experimentally measured parameter with theory prediction

Experiment:

branching fraction:
$$\mathcal{B} = \frac{N(\bar{B}^0 \to K^{*-}\pi^+) + N(B^0 \to K^{*+}\pi^-)}{N(\text{total }\bar{B}^0) + N(\text{total }B^0)}$$

direct CP-violation:
$$\mathcal{A}^{CP} = \frac{N(\bar{B}^0 \to K^{*-}\pi^+) - N(B^0 \to K^{*+}\pi^-)}{N(\bar{B}^0 \to K^{*-}\pi^+) + N(B^0 \to K^{*+}\pi^-)}$$

Theory:


limited precision on prediction of \mathcal{B} and \mathcal{A}^{CP} for single decay modes, as many Feynman diagrams contribute

want to compare experimentally measured parameter with theory prediction

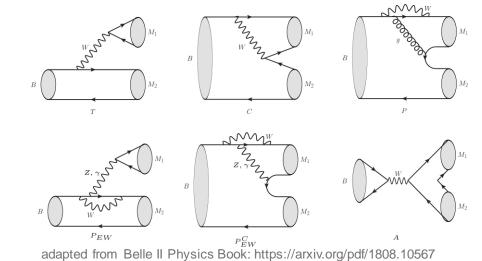
Experiment:

branching fraction:
$$\mathcal{B} = \frac{N(\bar{B}^0 \to K^{*-}\pi^+) + N(B^0 \to K^{*+}\pi^-)}{N(\text{total }\bar{B}^0) + N(\text{total }B^0)}$$

direct CP-violation:
$$\mathcal{A}^{CP} = \frac{N(\bar{B}^0 \to K^{*-}\pi^+) - N(B^0 \to K^{*+}\pi^-)}{N(\bar{B}^0 \to K^{*-}\pi^+) + N(B^0 \to K^{*+}\pi^-)}$$

Theory:

limited precision on prediction of \mathcal{B} and \mathcal{A}^{CP} for single decay modes, as many Feynman diagrams contribute

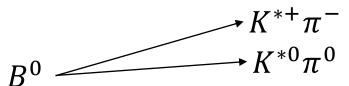

combine multiple decay modes related by symmetry (isospin) to "cancel" Feynman diagrams, e.g.: $B^0 \to K^{*+}\pi^-$, $B^0 \to K^{*0}\pi^0$, $B^+ \to K^{*+}\pi^0$, $B^+ \to K^{*0}\pi^+$

want to compare experimentally measured parameter with theory prediction

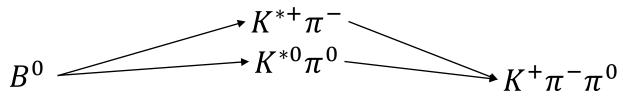
Experiment:

branching fraction:
$$\mathcal{B} = \frac{N(\bar{B}^0 \to K^{*-} \pi^+) + N(B^0 \to K^{*+} \pi^-)}{N(\operatorname{total} \bar{B}^0) + N(\operatorname{total} B^0)}$$

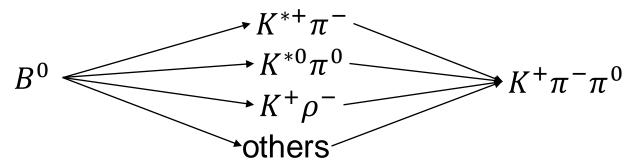
direct CP-violation:
$$\mathcal{A}^{CP} = \frac{N(\bar{B}^0 \to K^{*-}\pi^+) - N(B^0 \to K^{*+}\pi^-)}{N(\bar{B}^0 \to K^{*-}\pi^+) + N(B^0 \to K^{*+}\pi^-)}$$


Theory:

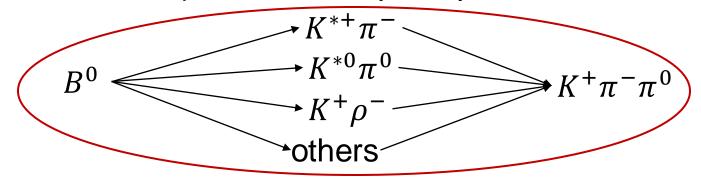
limited precision on prediction of \mathcal{B} and \mathcal{A}^{CP} for single decay modes, as many Feynman diagrams contribute


combine multiple decay modes related by symmetry (isospin) to "cancel" Feynman diagrams, e.g.: $B^0 \to K^{*+}\pi^-$, $B^0 \to K^{*0}\pi^0$, $B^+ \to K^{*+}\pi^0$, $B^+ \to K^{*0}\pi^+$

$$I_{K^*\pi} = \mathcal{A}_{K^{*+}\pi^{-}}^{CP} + \mathcal{A}_{K^{*0}\pi^{+}}^{CP} \frac{\mathcal{B}(K^{*0}\pi^{+})}{\mathcal{B}(K^{*+}\pi^{-})} \frac{\tau_{B^0}}{\tau_{B^{+}}} - 2\mathcal{B}_{K^{*+}\pi^0}^{CP} \frac{\mathcal{B}(K^{*+}\pi^0)}{\mathcal{B}(K^{*+}\pi^{-})} \frac{\tau_{B^0}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{*0}\pi^0}^{CP} \frac{\mathcal{B}(K^{*0}\pi^0)}{\mathcal{B}(K^{*+}\pi^{-})} \approx 0 \pm O(\text{few \%})$$

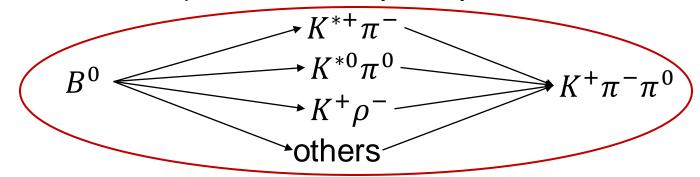

$$B^0 \rightarrow K^+\pi^-\pi^0$$

$$B^0 \rightarrow K^+\pi^-\pi^0$$



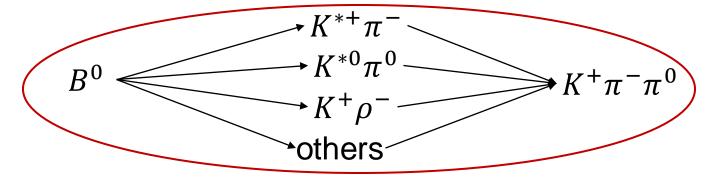
$$B^0 \rightarrow K^+\pi^-\pi^0$$

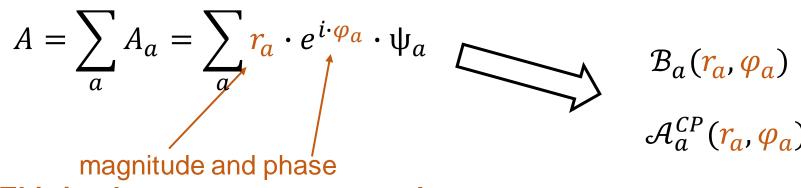
overall decay proceeds coherently via many "intermediate" states


$$B^0 \rightarrow K^+\pi^-\pi^0$$

- overall decay proceeds coherently via many "intermediate" states
- total decay amplitude is coherent sum of individual contributions

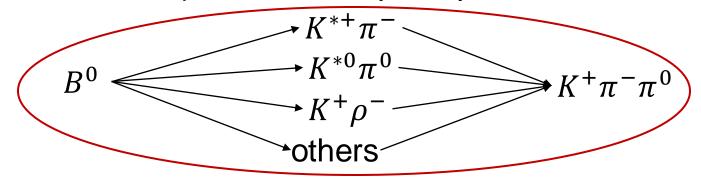
$$A = \sum_{a} A_{a}$$


$$B^0 \rightarrow K^+\pi^-\pi^0$$


- overall decay proceeds coherently via many "intermediate" states
- total decay amplitude is coherent sum of individual contributions

$$A = \sum_{a} A_{a} = \sum_{a} r_{a} \cdot e^{i \cdot \varphi_{a}} \cdot \psi_{a}$$
magnitude and phase
!This is what we want to measure!

$$B^0 \rightarrow K^+\pi^-\pi^0$$



- overall decay proceeds coherently via many "intermediate" states
- total decay amplitude is coherent sum of individual contributions

!This is what we want to measure!

$$B^0 \rightarrow K^+\pi^-\pi^0$$

- overall decay proceeds coherently via many "intermediate" states
- total decay amplitude is coherent sum of individual contributions

$$A = \sum_{a} A_{a} = \sum_{a} r_{a} \cdot e^{i \cdot \varphi_{a}} \cdot \psi_{a}$$

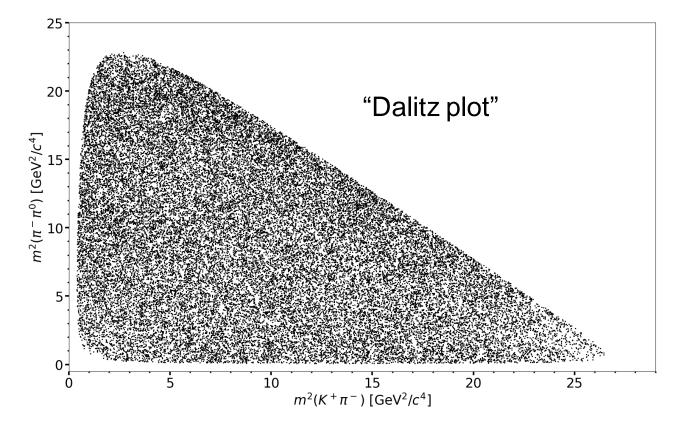
$$\mathcal{B}_{a}(r_{a}, \varphi_{a})$$

$$\mathcal{A}_{a}^{CP}(r_{a}, \varphi_{a})$$

$$\mathcal{A}_{a}^{CP}(r_{a}, \varphi_{a})$$
magnitude and phase

!This is what we want to measure!

Intensity (of $B^0 \to K^+\pi^-\pi^0$)

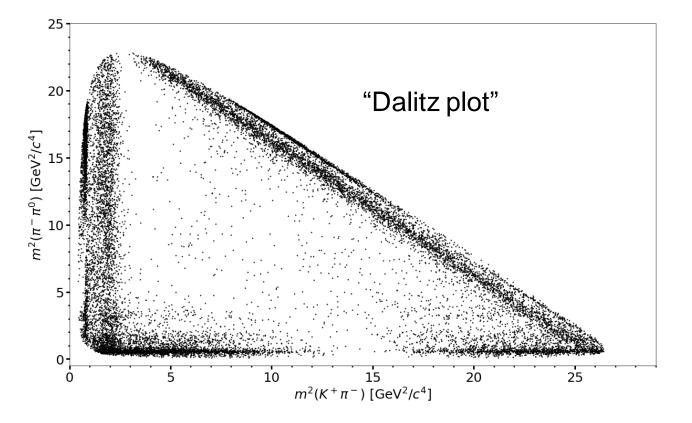

What we "see" is the intensity

$$\mathcal{I} = |A|^2 = \left| \sum_{a} A_a \right|^2 = \left| \sum_{a} r_a \cdot e^{i \cdot \varphi_a} \cdot \psi_a \right|^2$$

Intensity (of $B^0 \to K^+\pi^-\pi^0$)

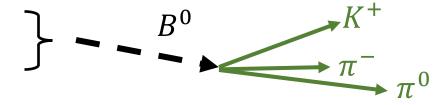
What we "see" is the intensity

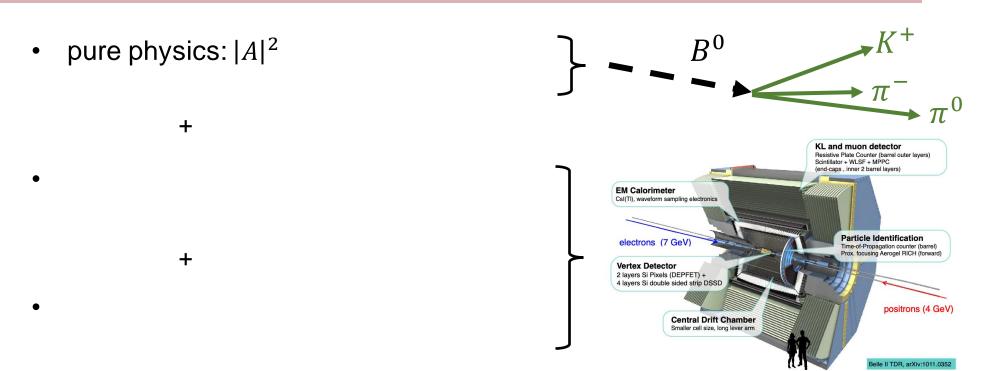
$$\mathcal{I} = |A|^2 = \left| \sum_{a} A_a \right|^2 = \left| \sum_{a} r_a \cdot e^{i \cdot \varphi_a} \cdot \psi_a \right|^2$$



- $\mathcal{I}/A/\psi_a$ is only a function of two variables
- $m^2(K^+\pi^-)$ vs. $m^2(\pi^-\pi^0)$: Dalitz plot

Intensity (of $B^0 \to K^+\pi^-\pi^0$)

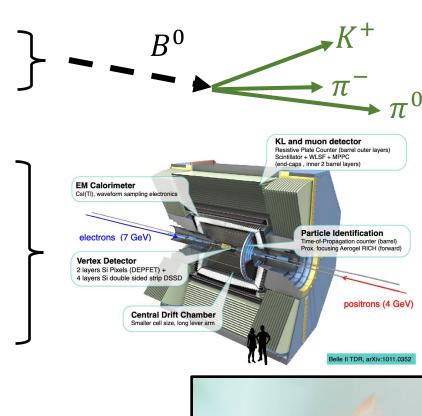

What we "see" is the intensity


$$\mathcal{I} = |A|^2 = \left| \sum_{a} A_a \right|^2 = \left| \sum_{a} r_a \cdot e^{i \cdot \varphi_a} \cdot \psi_a \right|^2$$

- $\mathcal{I}/A/\psi_a$ is only a function of two variables
- $m^2(K^+\pi^-)$ vs. $m^2(\pi^-\pi^0)$: Dalitz plot
- "real" Dalitz plot mostly empty
- resonances appear as "bands"

• pure physics: $|A|^2$

• pure physics: $|A|^2$

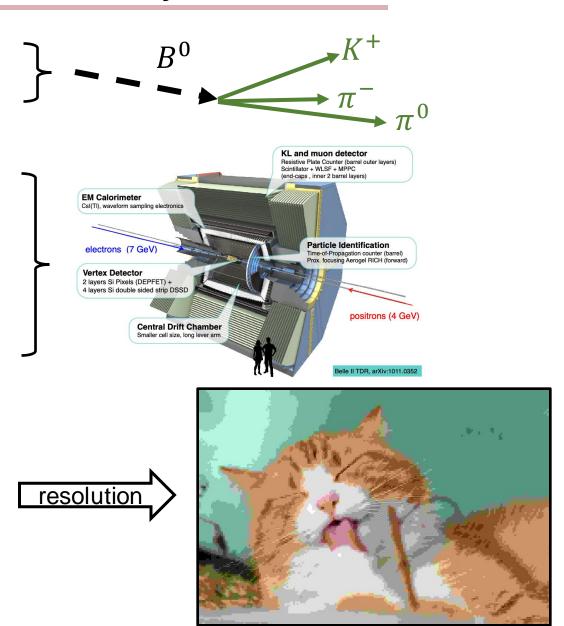

+

acceptance/efficiency

+

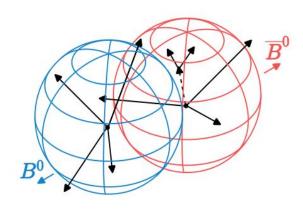
•

• pure physics: $|A|^2$

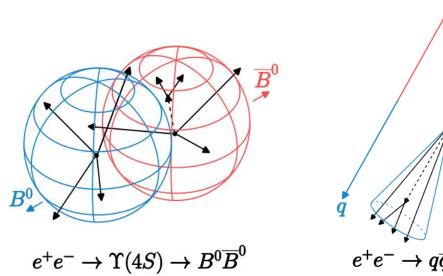

+

acceptance/efficiency

+


resolution

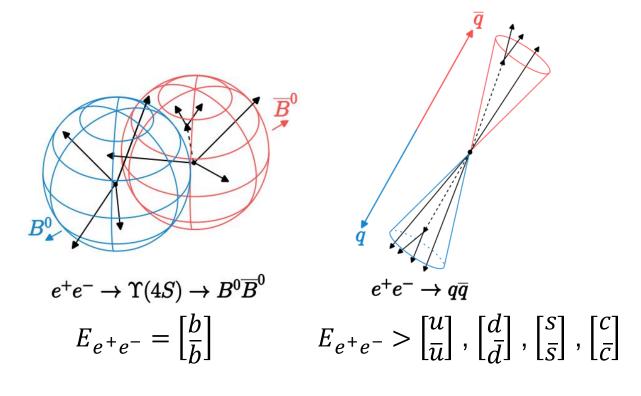
Backgrounds of $B^0 \to K^+\pi^-\pi^0$

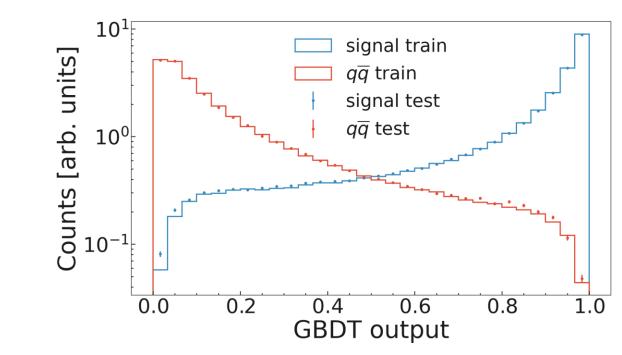

• $B\bar{B}$: random combinations of $B\bar{B}$ decays, e.g. $B^+ \to \bar{D}^0[K^+\pi^-]\rho^+[\pi^0\pi^+]$

$$e^{+}e^{-} \to \Upsilon(4S) \to B^{0}\overline{B}^{0}$$

$$E_{e^{+}e^{-}} = \left[\frac{b}{\overline{b}}\right]$$

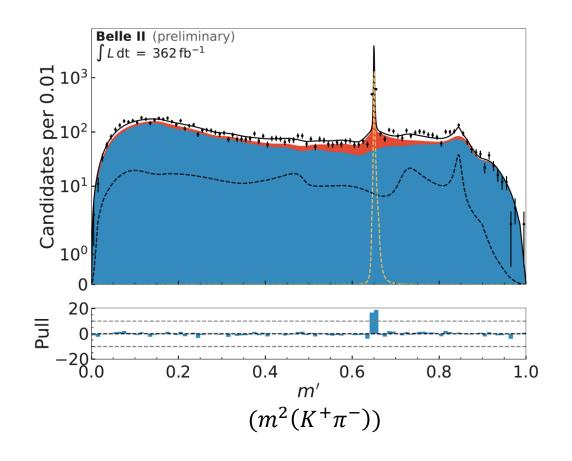
Backgrounds of $B^0 \to K^+\pi^-\pi^0$

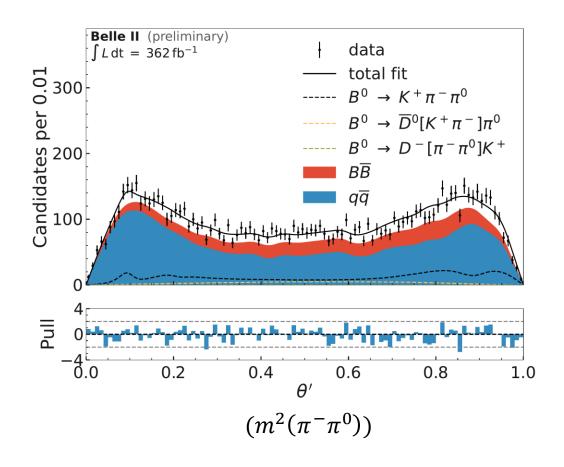

- $B\overline{B}$: random combinations of $B\overline{B}$ decays, e.g. $B^+ \to \overline{D}^0[K^+\pi^-]\rho^+[\pi^0\pi^+]$
- $q\bar{q}$: continuum $e^+e^- \to u\bar{u}$, $d\bar{d}$, $s\bar{s}$, $c\bar{c}$ about three times larger than $e^+e^- \to \Upsilon(4S) \to B\bar{B}$



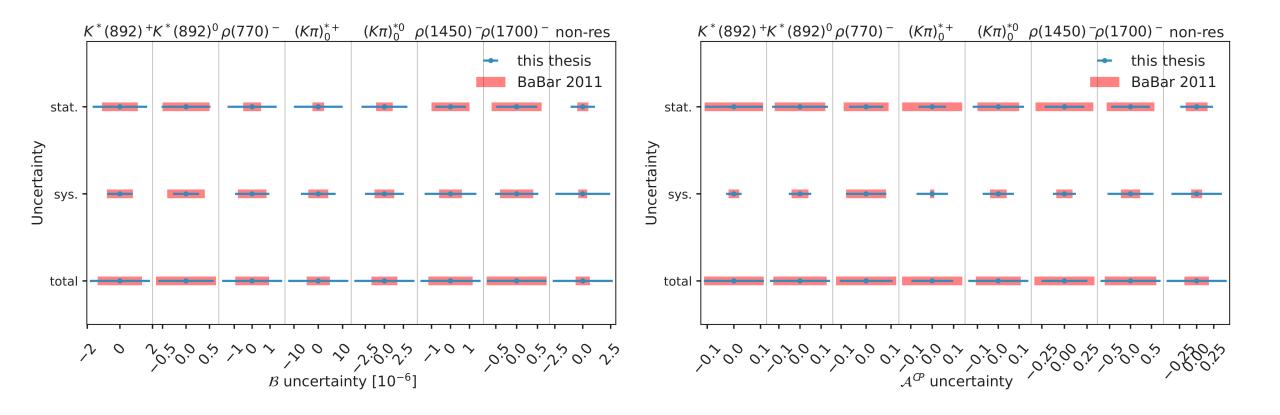
$$e^+e^- o qar q$$

Backgrounds of $B^0 \to K^+\pi^-\pi^0$


- $B\overline{B}$: random combinations of $B\overline{B}$ decays, e.g. $B^+ \to \overline{D}{}^0[K^+\pi^-]\rho^+[\pi^0\pi^+]$
- $q\bar{q}$: continuum $e^+e^- \to u\bar{u}$, $d\bar{d}$, $s\bar{s}$, $c\bar{c}$ about three times larger than $e^+e^- \to \Upsilon(4S) \to B\bar{B}$



exploit topological differences to train machine learning algorithm (GBDT)


Fit on Belle II Data

- fit projections in data look good
- central values of analysis were not unblinded, as I haven't gone through review

"Results"

- achieve precision on par with BaBar analysis despite using $\sim 14\%$ smaller dataset
- developed first Dalitz plot analysis within Belle II

Summary & Outlook

$$I_{K^*\pi} = A_{K^{*+}\pi^{-}}^{CP} + A_{K^{*0}\pi^{+}}^{CP} \frac{B(K^{*0}\pi^{+})}{B(K^{*+}\pi^{-})} \frac{\tau_{B^0}}{\tau_{B^{+}}} - 2A_{K^{*+}\pi^0}^{CP} \frac{B(K^{*+}\pi^0)}{B(K^{*+}\pi^{-})} \frac{\tau_{B^0}}{\tau_{B^{+}}} - 2A_{K^{*0}\pi^0}^{CP} \frac{B(K^{*0}\pi^0)}{B(K^{*+}\pi^{-})} \approx 0 \pm O(\text{few \%})$$

- developed $B^0 \to K^+\pi^-\pi^0$ Dalitz plot analysis to provide two inputs for isospin sum rule
- other two channels in $B^+ \to K^0 \pi^+ \pi^0$ (fellow PhD student)
- we target the first measurement of the $K^*\pi$ isospin sum

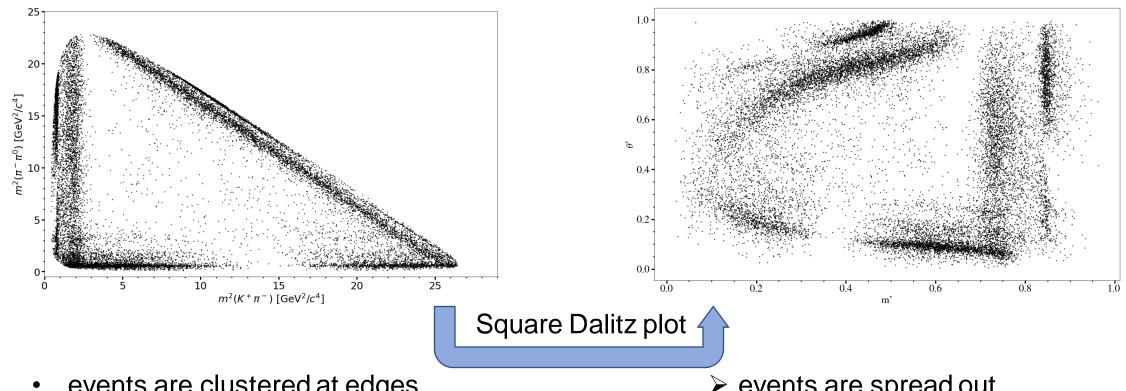
Backup

Systematic Uncertainties 1

		. (7)
Source	$\mathcal{B}_{ ext{inclusive}}$	$\mathcal{A}_{ ext{inclusive}}^{CP}$
Fit bias	1.3%	< 0.001
Tracking efficiency	0.5%	-
$B\overline{B}$ pair counting	1.5%	-
f^{00}	2.5%	-
Continuum suppression efficiency	0.5%	-
PID efficiency	1.7%	0.001
π^0 efficiency	4.6%	0.001
Resonances lineshape parameters	1.0%	0.002
Amplitude model	4.2%	0.018
Continuum model	0.5%	0.001
$B\overline{B}$ model	0.4%	0.002
Total	7.3%	0.018

Resonance	Source	\mathcal{B}	\mathcal{A}^{CP}
	Fit bias	< 0.1%	0.009
	Tracking	0.5%	-
	$B\overline{B}$ pair counting	1.5%	-
	f^{00}	2.5%	-
	Continuum suppression efficiency	0.5%	-
	PID efficiency	1.5%	0.002
$K^*(892)^+$	π^0 efficiency	1.5%	0.003
	Resonances lineshape parameters	3.6%	0.007
	Amplitude model	8.0%	0.026
	Continuum model	1.5%	0.004
	$B\overline{B}$ model	1.5%	0.003
	Total	9.7%	0.029
	Fit bias	1.2%	0.021
	Tracking	0.5%	-
	$B\overline{B}$ pair counting	1.5%	-
	f^{00}	2.5%	-
	Continuum suppression efficiency	0.5%	-
$K^*(892)^0$	PID efficiency	1.7%	0.004
	π^0 efficiency	1.2%	0.002
	Resonances lineshape parameters	2.7%	0.007
	Amplitude model	6.6%	0.048
	Continuum model	1.6%	0.004
	$B\overline{B} \bmod el$	1.6%	0.003
	Total	8.4%	0.053

Systematic Uncertainties 2


Resonance	Source	\mathcal{B}	\mathcal{A}^{CP}
	Fit bias	1.1%	0.016
	Tracking	0.5%	-
	$B\overline{B}$ pair counting	1.5%	-
	f^{00}	2.5%	-
	Continuum suppression efficiency	0.5%	-
	PID efficiency	1.0%	0.003
$\rho(770)^{-}$	π^0 efficiency	0.6%	0.005
	Resonances lineshape parameters	2.8%	0.012
	Amplitude model	13.8%	0.078
	Continuum model	0.7%	0.003
	$B\overline{B}$ model	0.6%	0.003
	Total	14.5%	0.081
	Fit bias	0.8%	< 0.001
	Tracking	0.5%	-
	$B\overline{B}$ pair counting	1.5%	-
	f^{00}	2.5%	-
	Continuum suppression efficiency	0.5%	-
$(K\pi)_0^{*+}$	PID efficiency	1.1%	0.004
	π^0 efficiency	0.8%	0.006
	Resonances lineshape parameters	20.3%	0.018
	Amplitude model	3.2%	0.070
	Continuum model	0.9%	0.006
	$B\overline{B}$ model	1.1%	0.007
	Total	20.9%	0.073

Resonance	Source	\mathcal{B}	\mathcal{A}^{CP}
	Fit bias	< 0.1%	0.009
	Tracking	0.5%	-
	$B\overline{B}$ pair counting	1.5%	-
	f^{00}	2.5%	-
	Continuum suppression efficiency	0.5%	-
	PID efficiency	2.1%	
$(K\pi)_0^{*0}$	π^0 efficiency	1.0%	0.011
	Resonances lineshape parameters	22.4%	0.020
	Amplitude model	19.0%	0.070
	Continuum model	1.0%	0.009
	$B\overline{B}$ model	1.0%	0.009
	Total	29.7%	0.075
	Fit bias	6.0%	0.036
	Tracking	0.5%	-
	$B\overline{B}$ pair counting	1.5%	-
	f^{00}	2.5%	-
	Continuum suppression efficiency	0.5%	-
	PID efficiency	1.8%	0.007
$\rho(1450)^{-}$	π^0 efficiency	2.3%	0.015
	Resonances lineshape parameters	19.0%	0.101
	Amplitude model	52.7%	0.063
	Continuum model	4.3%	0.015
	$B\overline{B} \mathrm{model}$	3.7%	0.014
	Total	56.8%	0.127

Systematic Uncertainties 3

Resonance	Source	${\cal B}$	\mathcal{A}^{CP}
	Fit bias	13.2%	0.062
	Tracking	0.5%	-
	$B\overline{B}$ pair counting	1.5%	-
	f^{00}	2.5%	-
	Continuum suppression efficiency	0.5%	-
	PID efficiency	4.1%	0.021
$\rho(1700)^{-}$	π^0 efficiency	4.1%	0.037
	Resonances lineshape parameters	84.5%	0.154
	Amplitude model	10.5%	0.521
	Continuum model	3.8%	0.033
	$B\overline{B}$ model	3.5%	0.017
	Total	86.6%	0.550
	Fit bias	8.5%	0.026
	Tracking	0.5%	-
	$B\overline{B}$ pair counting	1.5%	-
	f^{00}	2.5%	-
	Continuum suppression efficiency	0.5%	-
	PID efficiency	2.8%	0.037
non-resonant	π^0 efficiency	2.4%	0.046
	Resonances lineshape parameters	22.3%	0.129
	Amplitude model	83.9%	0.334
	Continuum model	5.2%	0.040
	$B\overline{B}$ model	4.3%	0.037
	Total	87.6%	0.368

The Square Dalitz Plot

- events are clustered at edges
- Dalitz plot has 'triangularish' shape

- > events are spread out
- > phase space occupies a square