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Introduction

PhD student in applied nuclear physics 
Uppsala University
Started 2025

Alva Myrdal Center (AMC) for Nuclear Disarmament 

Collaboration with the Swedish Defence Research Agency (FOI): 
Coincidence Spectrometry for Radionuclide Monitoring (CoSpeR) 
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Introduction

~2000 nuclear explosions
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Introduction

● Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)

● International Monitoring System (IMS)

Infrasound monitoring, Greenland Seismic monitoring, Niger Radionuclide monitoring, 
Germany
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Introduction
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Introduction
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Introduction
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Introduction
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Introduction

Minimum detectable activity: 

Goal: develop method to simulate MDA for coincidence detectors in  

MDA=
LD

ε γ γ I γ γ t

Efficiency

Detection limit 

Measurement timeIntensity

LD≈4.65√B for large B

Background counts
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Simulating background radiation

Coincidence background radiation: 

Low probability

γ

γ

● Depends on environment! 

● Approximation: isotropic and uniform

γ
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Simulating background radiation

A background model: 
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Simulating background radiation

A background model: 

● Uniform fluence inside sphere:

● Radius can be adjusted to fit detector

● Computationally efficient

● But what energies should the gamma rays have?

ψ=
N γ

r2π

Number of 
gammas

Radius
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Simulating background radiation

Response function: 

Response matrix: 

c (E)=∫
0

∞

R (E , E ' )s(E ' )dE '

c=R s

Measured 
spectrum

Simulated 
response 
function

Unknown 
source spectrum
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Simulating background radiation

Measuring spectra in two cases: 

Shielded at FOIUnshielded at UU
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Recall that

Simulating background radiation

c=R s

R
c
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Simulating background radiation

s

Recall that c=R s
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Recall that

Simulating background radiation

c=R s
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Simulating background radiation

Comparing simulations to measurements
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Simulating background radiation

Comparing simulations to measurements (1D)



20

Simulating background radiation

Comparing simulations to measurements (1D)
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Simulating background radiation

Comparing simulations to measurements (2D)

Works well for 
E1 + E2 < 2614 keV
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Simulating background radiation

Comparing simulations to measurements (2D)

Simulation underestimates 
by ~40% above 500 keV
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Example

Measure La-140 point source
Two 70x70 mm cylindrical detectors, 1 mm of Al surrounding Ge, point source
How does MDA vary with distance between the detectors?

MDA=
LD

ε γ γ I γ γ t
Background simulation:

Radionuclide simulation:

γ

γ γ

ε γ γ I γ γ

LD
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Example

La-140
Most promising γγ-coincidences (keV): [329, 487]; [816, 1596]; [487, 1596]
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Example

Radionuclide simulation Background simulation

ε γ γ I γ γ LD
MDA=

LD
ε γ γ I γ γ t
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Example

(La-140, t = 1 day, no decay correction, unshielded environment)

MDA=
LD

ε γ γ I γ γ t
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Example

(La-140, t = 1 day, no decay correction, unshielded environment)

MDA=
LD

ε γ γ I γ γ t
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Example

(La-140, t = 1 day, no decay correction, unshielded environment)

MDA=
LD

ε γ γ I γ γ t
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Example

(La-140, t = 1 day, no decay correction, unshielded environment)

MDA=
LD

ε γ γ I γ γ t
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● More complex detectors 

Next steps

F.J. Pearce et al. 
10.1016/j.nima.2021.166044

H. Hayashi et al. 
10.1016/j.nima.2014.02.012

Mirion Technologies
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● More complex detectors 

● Other radionuclides 

● Candidates: Ba-140/La-140, Mo-99, Te-132/I-132, I-131, I-133, I-135 

Next steps
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● More complex detectors 

● Other radionuclides 

● Candidates: Ba-140/La-140, Mo-99, Te-132/I-132, I-131, I-133, I-135 

● What detector achieves the lowest MDA? 

Next steps
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The end



34

Backup slides
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Example: simple cylindrical detectors
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The alternatives

● Currie formula (Poisson-normal) 

● Stapleton approximation 

● ISO standard 19929 (MDA directly)

● Poisson definition (as in Gilmore)

● Poisson definition (“the correct way”)

LC=kα √2B

LD=LC+
kα
2

2
+kα √ kα24 +LC+2BLC=

kα
2

2
+kα

2 √2(B+0.4)

LD=kα
2+2kα √2B

MDA=w k2+2k √2B
1−k2 var (w)

w= 1
ε I t
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Gilmore definitions 

● Gilmore uses Poisson-normal (Currie) and Possion definition 

● They do not converge for high counts! 

Careful! Gilmore is not 
consistent with definitions, 
one needs to subtract B 
from LC here

Does not converge, even 
after correction
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Detection limits

● More or less the same 
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Radionuclides

Which radionuclides? 
● Coincident gamma emission
● Good half-life
● Produced in tests
● Beneficial if well-known

Shortlist: 
● Ba-140/La-140
● Te-132/I-132
● Mo-99
● I-131
● I-133
● I-135
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Unfolding background spectrum

Implementation in Geant4:

Randomly 
sampled CDF → 
get energy
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