Response functions from a Chebyshev expansion

In collaboration with Joanna E. Sobczyk and Sonia Bacca Based on: Phys. Rev. C 112, 045502

Immo Reis

Annual Swedish Nuclear Physics and SFAIR meeting 2025 Chalmers University of Technology, Göteborg, 28/10/2025

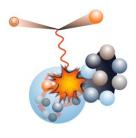
Neutrinos and nuclei

Are elusive

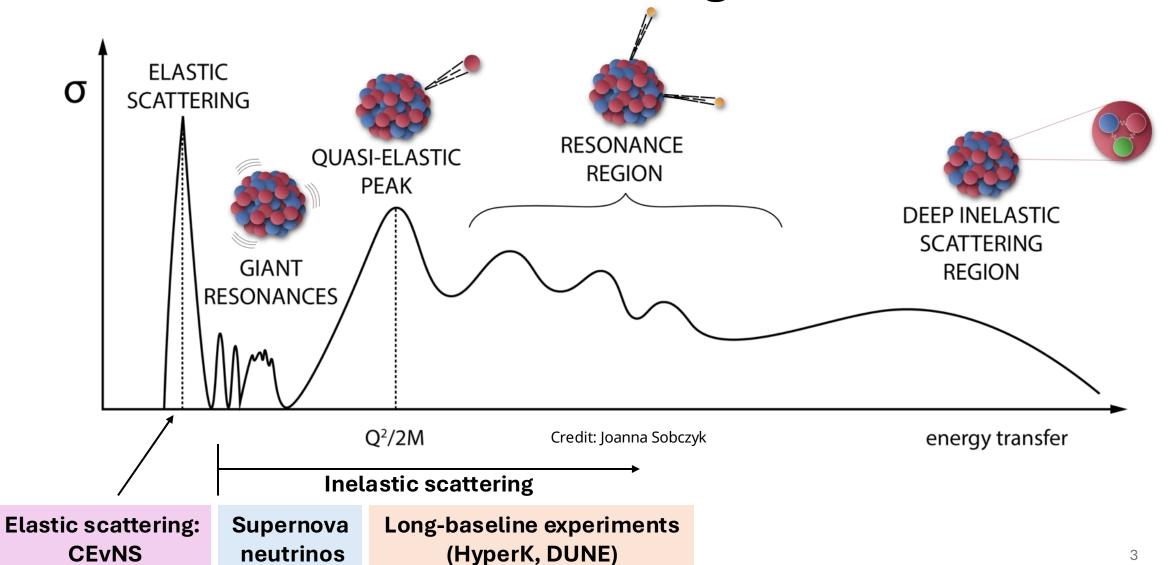
oscillate

Maybe their own antiparticle

We need to understand their interactions with nuclei to understand neutrino properties

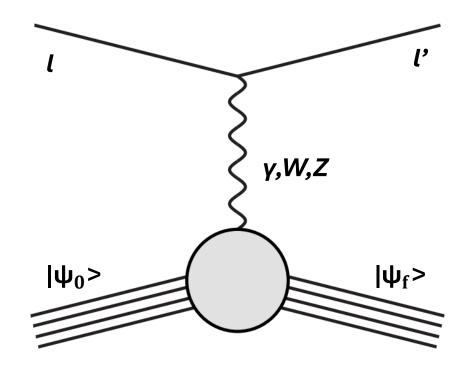


Neutrino-Nucleus Scattering



Lepton-Nucleus Scattering

- Under some assumptions cross section factorizes
- Nuclear part is similar for electron-nucleus (neutrino-nucleus) scattering

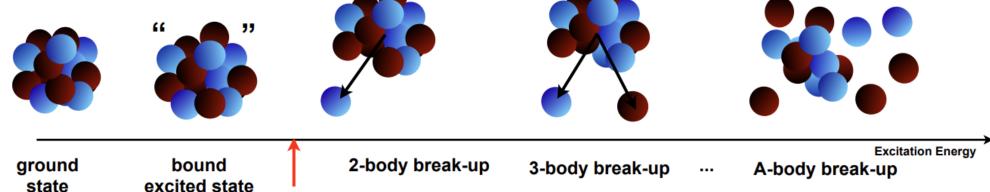


 $\sigma \propto L^{\mu\nu} R_{\mu\nu}$ lepton nuclear tensor responses

Nuclear Response Functions

continuum

$$R_{\alpha}(\mathbf{q}, \omega) = \sum_{f} |\langle \Psi_{f} | O_{\alpha}(\mathbf{q}) | \Psi_{0} \rangle|^{2} \delta (E_{f} - E_{0} - \omega)$$



Bacca, Eur. Phys. J Plus 131, 107 (2016)

Hamiltonian & currents from EFT

- QCD is intractable at nuclear energies for > 1 nucleon
- Exploit approximate chiral symmetry of low energy QCD ($m_u \cong m_d \cong 0$)
- Construct a Lagrangian of interacting nucleons, pions (and deltas) constrained by QCD

	2N force	3N force	4N force
LO	X +-+		
NLO			
N2LO		 	
N3LO		<u> </u>	

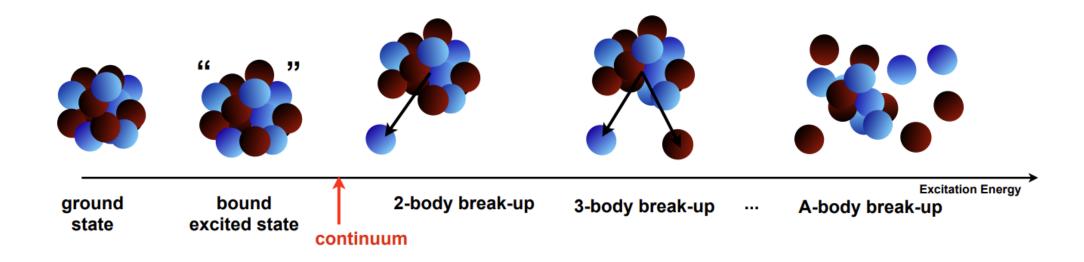
$$J = \sum_{i} j_{i} + \sum_{i < j} j_{ij} + \dots$$

Many body problem

- Solve $H|\Psi\rangle=E|\Psi\rangle$
- Finite dimensional expansion in bound basis (harmonic oscillator)

$$|\Psi_0\rangle = \sum_{l} c_k |n_k l_k\rangle$$
 $\hat{O}_{ij} = \langle n_i l_i ... | \hat{O} | n_j l_j ... \rangle$

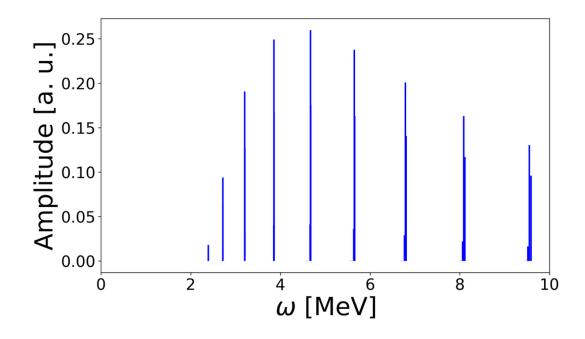
Many body problem



→ Finite number of eigenvalues of H and "pseudo continuum states" with bound state boundary conditions

Response in bound state approaches

$$R_{\alpha}(\mathbf{q}, \omega) = \sum_{f} |\langle \Psi_{f} | O_{\alpha}(\mathbf{q}) | \Psi_{0} \rangle|^{2} \delta (E_{f} - E_{0} - \omega)$$



- Unphysical discrete response
- Diagonalizing H computationally prohibitive

Integral transforms

Can avoid the final states and the discrete nature of the response

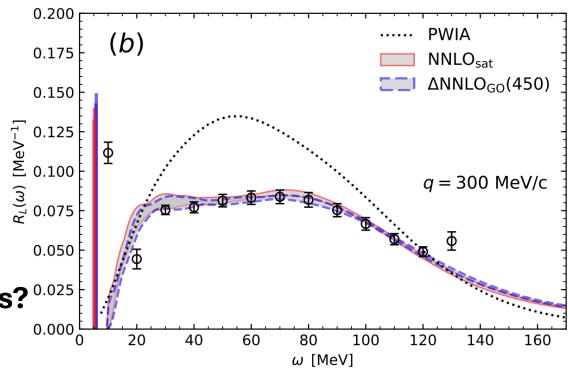
$$\Phi(\sigma) = \int d\omega K(\sigma, \omega) R(\omega)$$
$$= \langle \Psi_0 | O_{\alpha}^{\dagger}(\mathbf{q}) K(\sigma, H - E_0) O_{\alpha}(\mathbf{q}) | \Psi_0 \rangle$$

Kernels are usually some representation of delta function

Inversion

- Invert integral transform imposing smoothness to obtain response
- →Works for responses with one simple structure
- → Mathematically ill-posed: **Uncertainties?** 0.025

Quasi-elastic e^- – 40 Ca scattering



Sobczyk et al., Phys.Rev.Lett. 127 (2021) 7, 072501

Expansion of the integral transform

$$K(\omega, \sigma) = \sum_{k}^{\infty} c_k(\sigma) T_k(\omega)$$

$$\Phi(\sigma) = \int d\omega K(\omega, \sigma) R(\omega) = \sum_{k}^{\infty} c_k(\sigma) m_k$$

$$m_k = \int d\omega \, T_k(\omega) R(\omega) = \langle \Psi_0 | \, O^{\dagger} T_k(H) O | \Psi_0 \rangle$$

The Chebyshev approach

- Suppose you bin the response $h(\eta,\Delta)=\int d\omega R(\mathbf{q},\omega)f(\omega,\eta;\Delta)$
- And the integral transform expanded in Chebyshev polynomials

$$\tilde{h}^{\Lambda}(\eta; \Delta) = \int \int d\sigma d\omega K(\omega, \sigma; \lambda) R(\mathbf{q}, \omega) f(\omega, \eta; \Delta)$$

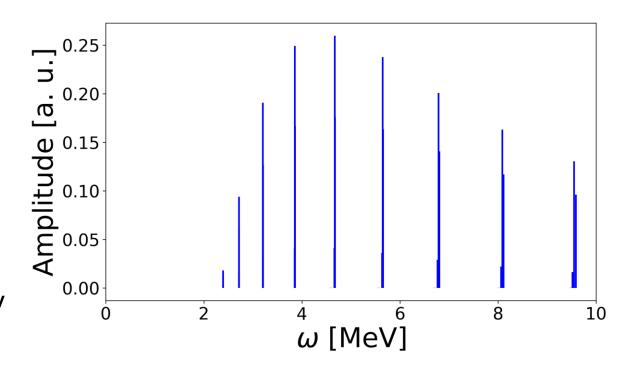
Then you obtain mathematically sound lower and upper error limits

$$\tilde{h}^{\Lambda}(\eta; \Delta - \Lambda) - Q^{0}\Sigma \le h(\eta, \Delta) \le \tilde{h}^{\Lambda}(\eta; \Delta + \Lambda) + Q^{0}\Sigma$$

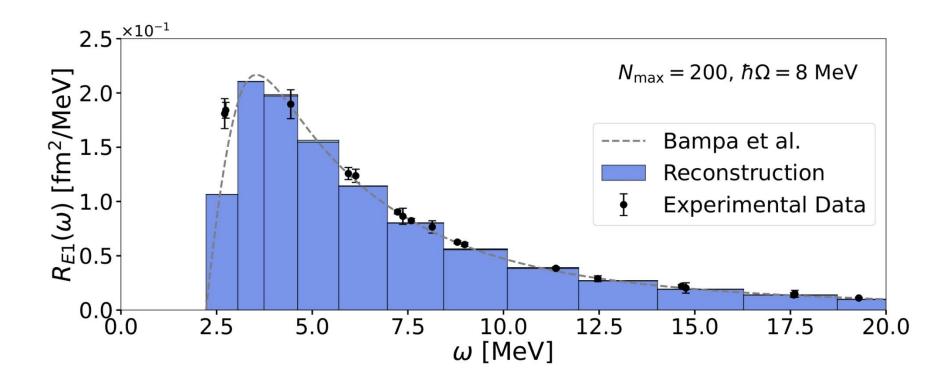
Sobczyk and Roggero, Phys. Rev. E **105** (2022) 5, 055310

Binning Strategy

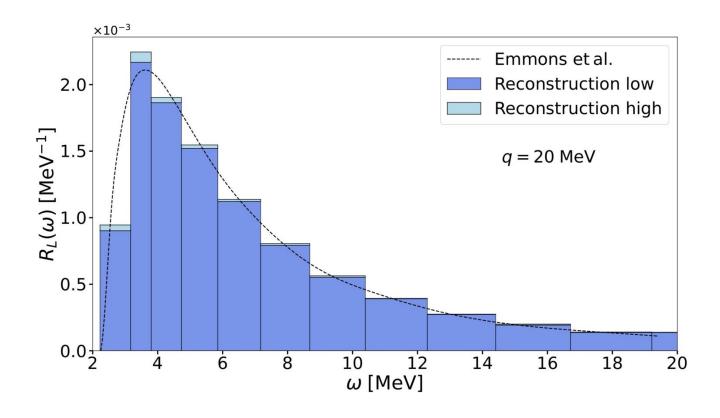
- Each bin should contain a similar number of eigenvalues (>0)
- Bin edges should be in between
 eigenvalue clusters to minimize error
- → Need access to the eigenvalue density
- → Regularized density of states can be calculated in the same framework



Deuteron E1

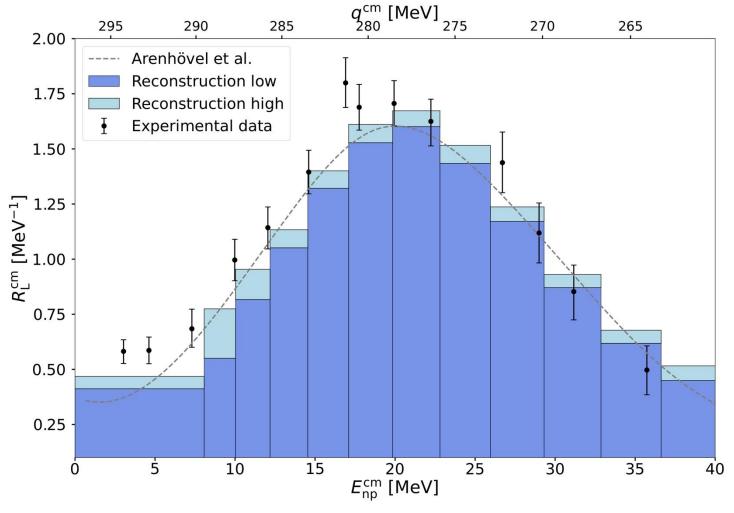


Deuteron longitudinal response



Emmons et al., J. Phys. G 48, 035101 (2021)

Deuteron longitudinal response



B. P. Quinn et al., Phys. Rev. C 37, 1609 (1988)

Summary

- Chebyshev expansion produces responses with errors
- Errors can be controlled by choosing a sensible binning
- Works well in the deuteron (test case)
- Extend to relevant nuclei (¹⁶O, ⁴⁰Ar, ...)
- Extend to complicated, narrow responses inaccessible to regular integral transform approaches

Density of states estimation

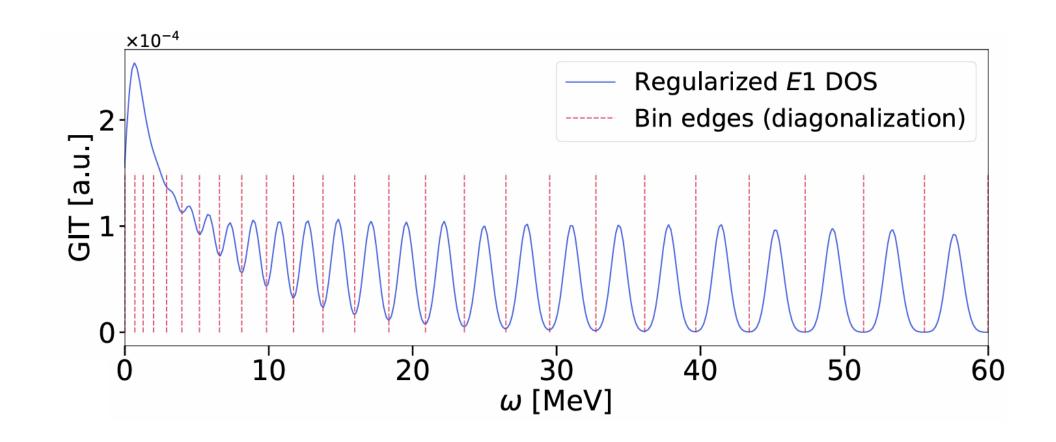
We compute moments of the form $ra{\Psi_0}O^\dagger H^kO\ket{\Psi_0}$

$$O|\Psi_0\rangle = \sum_n d_n |\Psi_n\rangle$$
 $H^k O|\Psi_0\rangle = \sum_n d_n E_n^k |\Psi_n\rangle$

Draw $O\left|\Psi_{0}\right>$ randomly so each eigenstate contributes equally to the moments

→ Regularized estimate for the density of states

Regularized density of states in the deuteron



Deuteron longitudinal response

