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Introduction: Why measuring light ion production for neutron induced reactions

Typical double differential cross section (DDX) spectrum:
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Three main mechanisms:

- Compound
o Very slow

o Isotropic emission
o No memory of entrance channel

- Direct
o Very fast
o Forward-peaked
o Few nucleons involved

- Pre-equilibrium
o Partial equilibrium
o Multiple nucleons involved
o Semi-isotropic



Introduction: Why measuring light ion production for neutron induced reactions

* Very scarce data for a series of materials

* Several applications

In particular, considering structural materials:
* Forsome materials, the total cross

sections are also scarce * Swealling and embrittlement of the material due to

formation of gas inside it.
600

ENDF (MTs: (n,p), (n,2p))

T Interpretation of IFMIF-DONES (International Fusion Materials
i 56F X Irradiation Facility - Demo Oriented NEutron Source) data.
TENDL (MTs: (n,np), (n.2np), (n.n2p). e n 9 p

n,npa), (n,p), (n.2p),
=00 (h-pa. (npa). (n.p0)
TALYS-2.0 (best y)
Sharma+ (2024)
Saraf+ (1991)
Grimes+ (1979)
G.Brown+ (1957)
LI Klochkova+ (1994)
F.L.Hassler (1962) [Fe-nat]
1.Slypen+ 2004 [Fe-nat]

Improving theoretical models for pre-equilibrium emission
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Improving the data evaluations

And more diverse applications:
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* Radiation protection

* Dosimetry for aviation and spaceflight, electronics (single-
event effects)
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Introduction: Medley setup and Neutrons for Science (NFS) facility in GANIL

Itis currently operating in Neutron For Science (NFS) facility, in = ————— 40 MeV d + Be
GAN|L, France. A 1E+T - ;:-I.’rii01m
« Veryintense white neutron beam (up to 44 MeV) . e
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Ledoux, X., Foy, J.C., Ducret, J.E. et al. First beams at neutrons for science. Eur. Phys. J. A57, 257 (2021)



Introduction: Medley setup and Neutrons for Science (NFS) facility in GANIL

Medley setup was developed in Uppsala University, and is
= composed of:

-

* Eight (4x2) three-detector telescopes for PID
* Target holder (supporting up to three targets)

* Rotating table, possibility to exchange detector sets
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M. Hayashi etal., Proc. ND 2007, p. 1091-1094
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Introduction: Medley setup and Neutrons for Science (NFS) facility in GANIL
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Introduction: Medley setup and Neutrons for Science (NFS) facility in GANIL
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Experimental Campaigns

e Several experiments were carried out with Medley at NFS:

1. LIONS (Light ION production Studies with Medley) - 2021/2022

a. Carbon

2. GARIC (GAs pRoduction In Chromium by neutrons) - 2022/2023

a. Chromium

3. CATRIN (Characterization of neutron fields at the emerging NFS facility) - 2022 (RADNEXT project) - Fininshed

a. Characterization of the neutron flux using Medley

Target installed in Medley.

4. GARROS (Gas pRoduction in iROn by neutronS) - 2024

a. lron

5. Gas production study in copper - 2024

a. Project conducted by collaborators from UKAEA

6. GARSIO: Gas production in silicon and oxygen by neutrons - Approved

a. Silicon and Oxygen



NFS' neutron flux reconstruction (RADNEXT project)

Using a CH, and a C target, we can measure the (n,p) elastic scattering. From this point, two methods can be
used to obtain the spectral neutron flux:

Direct method: reconstruction En from Ep for (n,p) events:
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Some corrections needed - setup enhancement

* Timing correction
* Energy correction
* Thick target correction

A difference of pulse shape when the particle punches through
the detector* introduces a walk effect on our CFD filter
--> deviation in measured ToF

— 40 : .
%J A% TOF(Epmmn) calculation
= 35p; :
§ 30R%
9 c i
B . i
W o5F &
N
. %
10F i
0: Allgljl.ll'ill|illlilllilllil1il|‘%
60 80 1p0 120 140 160 180 200 220 240
. | ToF (ns)
L
! \
* P, d, t SHeu
./
target®, \. /

1

10°

! ;‘ 102

10

*The second silicon is our timing detector.

First order correction for this effect was produced:
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Some corrections needed - setup enhancement

* Tim Ing correction It is carried out by calculating the expected remaining energy for

* Energy correction an identified particle to correct the events' total energy:
* Thick target correction

It is also needed to correct for the energy lost between the Si2 and /\AE .
the Csl (matching problem): — ('\, T
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Some corrections needed - setup enhancement

* Timing correction

* Energy correction  This is done using MC + energy loss calculations.

* Thick target correction
* First version is completed but there are still a few details to implement:

We need to correct our measurements for the losses of energy
within the target:
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Preliminary cross sections

Fe(n,Xp) double differential cross sections

[”"'Fe(n,xp), neutron E = 27.0-29.3 Mev]

("Fe(n,xp), neutron E = 21.6-23.2 MeV |

["‘“Fe(n,xp), neutron E = 14.5-15.5 MeVJ
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* The first results with DDX were successfully obtained
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Preliminary cross sections

Proton differential cross sections — angular

R e * Integrating in dE we can
Enn=27.0MeV obtain the angular
| differential cross
section as a function of
neutron energy
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* Fitting Legendre's
polynomials allow us to
obtain the total cross
section for each
neutron energy

cos{Angle) - - cos{Angle)
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Preliminary cross sections

Proton total cross sections — First results
Proton production cross sections
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* Comparison of the total
proton production cross
section show some
agreement with the
models

e Some uncertainties still
need to be considered

e Some corrections for
accounting the detector
thresholds are needed
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Summary and next steps

Summary and next steps

* We measure double differential cross sections, and total cross
sections for light ions.

* Medley proved to work properly under white neutron beam,
providing a good amount of valuable data which is under analysis.

* Several challenges were identified and solved during the last
months; the first preliminary results were obtained.

* The cross sections seems to agree with the models in the mid
neutron energy range.

* Fine tuning of the methods and techniques for treating the data are
being carried out.
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