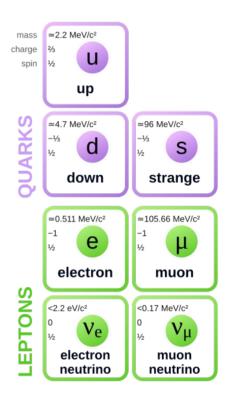
Charm Physics at Belle II

Uppsala Universitet

martina.laurenza@physics.uu.se

Annual Swedish Nuclear Physicists' meeting and SFAIR meeting 2025


Charlmers (Göteborg), 28-30 October 2025

The November Revolution

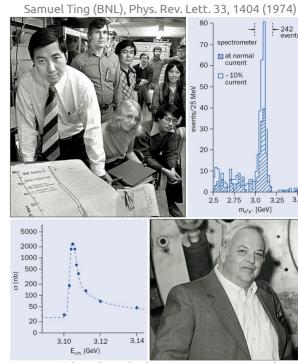
The world of particle physics was revolutionised in November 1974

At the time, most of the elements of the Standard Model of particle physics had already been formulated

- → only a limited set of fundamental *fermions* were confidently believed to exist
- → the up, down and strange *quarks* were thought to make up the strongly interacting particles known at that time

The November Revolution

The world of particle physics was revolutionised in November 1974


At the time, most of the elements of the Standard Model of particle physics had already been formulated

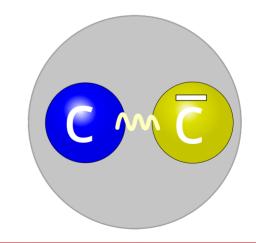
- → only a limited set of fundamental *fermions* were confidently believed to exist
- → the up, down and strange *quarks* were thought to make up the strongly interacting particles known at that time

Movember 11, 1974:

two experimental groups discovered a narrow vector boson

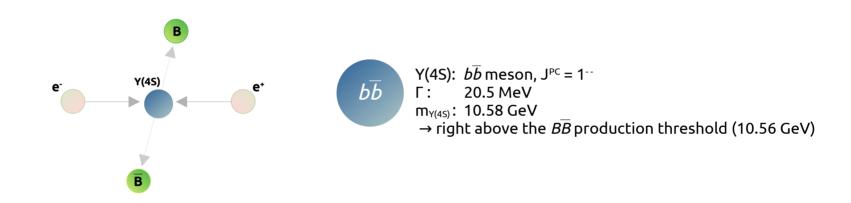
→ 5 hypotheses were explored: a hidden charm vector meson, a coloured vector meson, an intermediate vector boson, a Higgs meson, a narrow resonances in strong interactions.

A Charming Discovery

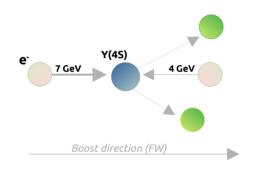

The J/ ψ proved to be a charm-anticharm bound state

- → cemented by the subsequent discovery of related cc-states and by the observation of charmed particles in 1976
- → vindicated the theory from Glashow and Bjorken
- → eliminated any doubts regarding the quark model of 1964
- → triggered the development of the Standard Model into its modern form

First example of quarkonium: a heavy quark bound to an anti-quark of the same flavour

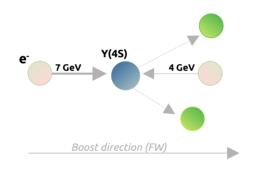

Composed of **unstable quarks**, bound by gluons, decaying mainly via the annihilation of their constituent quarks, quarkonia have fascinated particle physicists ever since.

The study of charm decays is characterized by many challenging and exiting peculiarities which make charm sector an **ideal testing ground** for Quantum Chromodynamics (QCD) based framework and very sensitive probe to New Physics (NP)



B-factories are dedicated for the production of a \overline{BB} pairs

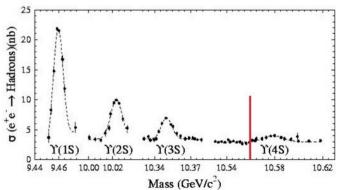
B-factories are dedicated for the production of a \overline{BB} pairs at e^+e^- asymmetric-energy colliders


Y(4S): $b\overline{b}$ meson, $J^{PC} = 1^{-1}$

 $\begin{array}{ll} \Gamma : & 20.5 \ MeV \\ m_{Y(4S)} \colon 10.58 \ GeV \end{array}$

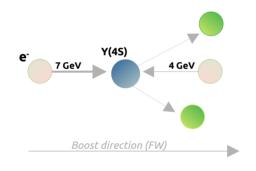
 \rightarrow right above the $B\overline{B}$ production threshold (10.56 GeV)

B-factories are dedicated for the production of a \overline{BB} pairs at e^+e^- asymmetric-energy colliders



 $b\overline{b}$

Y(4S): $b\overline{b}$ meson, $J^{PC} = 1^{-1}$

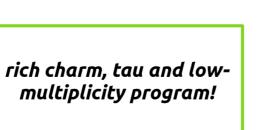

Γ: 20.5 MeVm_{Y(45)}: 10.58 GeV

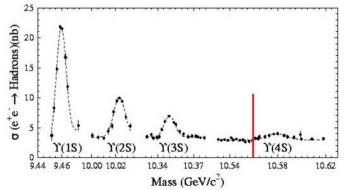
 \rightarrow right above the $B\overline{B}$ production threshold (10.56 GeV)

B-factories are dedicated for the production of a \overline{BB} pairs at e^+e^- asymmetric-energy colliders

 $\sigma(e^+e^- \rightarrow b\overline{b}) = 1.1 \text{ nb}$ $\sigma(e^+e^- \rightarrow c\overline{c}) = 1.3 \text{ nb}$

 $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.9 \text{ nb}$

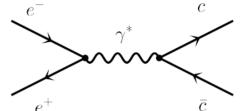

 $\sigma(e^+e^- \rightarrow uds) = 2.1 \text{ nb}$

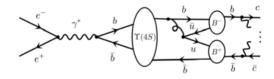

 $b\overline{b}$

Y(4S): $b\overline{b}$ meson, $J^{PC} = 1$

Γ: 20.5 MeV m_{Y(4S)}: 10.58 GeV

 \rightarrow right above the $B\overline{B}$ production threshold (10.56 GeV)

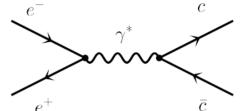



Charm at B-factories

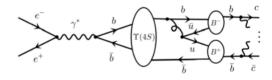
B-factories are dedicated for the production of a BB pairs at e⁺e⁻ **asymmetric-energy** colliders Charm particles can be produced as

1. **Prompt production**charmed hadrons are produced as a direct result of the beam collision

2. **Secondary production**result of the decay of another heavier particle produced in the collision

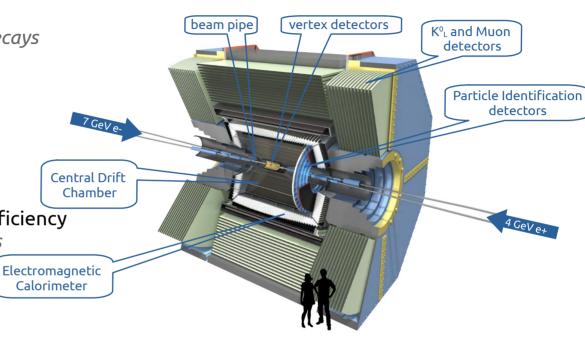


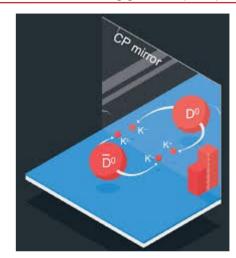
Charm at B-factories


B-factories are dedicated for the production of a BB pairs at e⁺e⁻ **asymmetric-energy** colliders Charm particles can be produced as

Prompt production
 charmed hadrons are produced as a direct result of the beam collision

*more dominant at B-factories

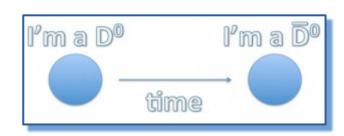

2. **Secondary production**result of the decay of another heavier particle produced in the collision


Charm at Belle II

- 1. excellent vertex reconstruction
 - \rightarrow allow identification of prompt decays
- 2. excellent momentum resolution
 - → translate into mass resolution
- 3. excellent particle identification
 - → suppress background level
- 4. high trigger and reconstruction efficiency
 - → maximize number of signal yields
- 5. particle boost & time resolution
 - → for time-dependent studies
- 6. reconstruction of neutrals
 - → for final states with neutral particles

- CP symmetry combines Charge conjugation (C) swapping particles with antiparticles — and Parity (P) — mirroring spatial coordinates
- If CP were an exact symmetry, matter and antimatter would behave identically, instead almost no anti-matter is left
- CP violation is one of the necessary ingredients to explain why our universe is made of matter
- Theory takes into account some CP violation
 - → not right amount to account for the *missing* anti-matter
- The first and only observation of CPV in charm from LHCb [1]
 - → It is essential to continue searching for CPV in charm hadrons to understand its origin and further constrain the SM

Mixing in Charm


Some neutral mesons (like K^0 , B_-^0 , D^0) can *oscillate* into their antiparticle

 \rightarrow their **flavor eigenstates** (D°, \bar{D} °) are not the same as their **mass eigenstates**

The oscillation rate depends on:

- the **mass difference** (Δ m) between the two eigenstates
- the **lifetime difference** ($\Delta\Gamma$)

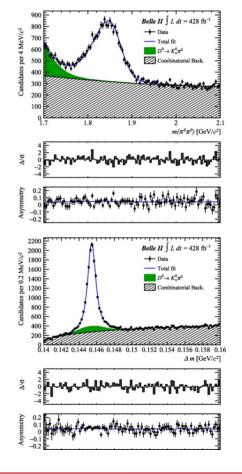
and it is a rare and subtle effect in weak interactions

Belle II can measure:

- mixing parameters (x = Δ m/ Γ , y = $\Delta\Gamma$ / 2Γ) with **high precision**
- ∘ time-dependent decay rates in channels like $D^0 \rightarrow K^+\pi^-$ or $D^0 \rightarrow K^+K^-$
 - → The clean e+e- environment and excellent vertex resolution are ideal for resolving the tiny decay-time differences
 - → Combining mixing and CPV measurements helps disentangle Standard Model vs. New Physics effects

Charmed Baryons

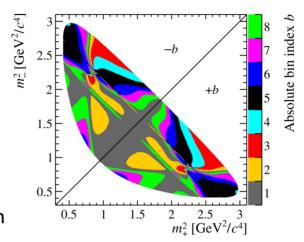
- Baryon physics is a rich field, offering insights complementary to those from meson studies
- The observation of *CP violation in b-baryon decays by LHCb* [2] marks a major milestone in flavour physics *but what about charm baryons?*
- There's still plenty of room to improve our knowledge of charm baryons: branching ratios, Dalitz structures of multi-body decays, hadronic form factors
- A deeper understanding is crucial to:
 - → probe CP violation
 - → search for New Physics
 - → explore rare or forbidden processes

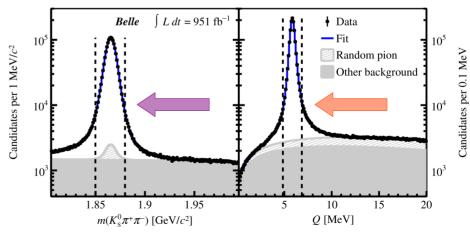


- Reconstruct $D^{*+} \rightarrow \Pi^+ D^0 (\rightarrow \Pi^0 \Pi^0)$
 - → Large backgrounds because of 4y final state
 - → BDT to suppress background using information on photons kinematics and on the reconstructed calorimeter clusters

$$A^{\pi^0\pi^0} = \frac{N[D^{*+} \to (D^0 \to \pi^0\pi^0)\pi^+] - N[D^{*-} \to (\bar{D}^0 \to \pi^0\pi^0)\pi^-]}{N[D^{*+} \to (D^0 \to \pi^0\pi^0)\pi^+] + N[D^{*-} \to (\bar{D}^0 \to \pi^0\pi^0)\pi^-]} = A_{CP}(D^0 \to \pi^0\pi^0) + A_{P}^{D^{*+}} + A_{e}^{\pi_s}$$

- Asymmetry extracted from a fit to the D⁰ invariant mass and the D*+-D⁰ mass difference
 - **production asymmetry** (odd in cos θ_{CM}) removed by averaging A_{raw} of forward (cos $\theta_{CM} > 0$) and backward (cos $\theta_{CM} < 0$) decays
 - tag-pion detection asymmetry measured with tagged & untagged D⁰ → K⁻π⁺ decays and corrected
- A_{CP} = (0.30 ± 0.72 ± 0.20) %
 ~15% less precise than BELLE but with half of the statistics

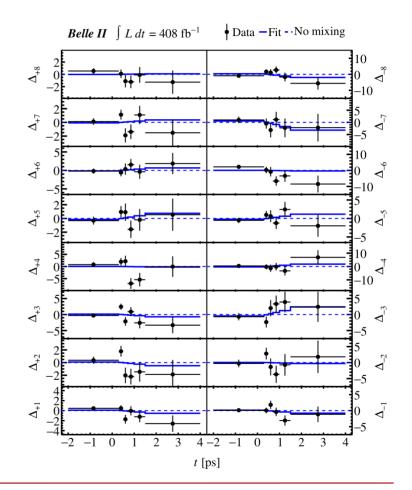




Mixing parameters: $|D_{1,2}\rangle = p | D^0 \rangle + q | \overline{D}^0 \rangle$ from masses and widths of the $D_{1/2}$ states:

$$x = \frac{m_1 - m_2}{\Gamma} \qquad y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$

- Reconstruct D*+→π+D⁰(→K₅⁰π+π-)
- Split Dalitz plot in bins to be independent from any explicit model $[m_{\pm} = m(K_S^0 \pi^{\pm})]$
- Separate signal and backgrounds using the K_s⁰π⁺π⁻ invariant mass and the energy released in the D*+ decay
- Restrict to the 2D peak signal region for the rest of the analysis



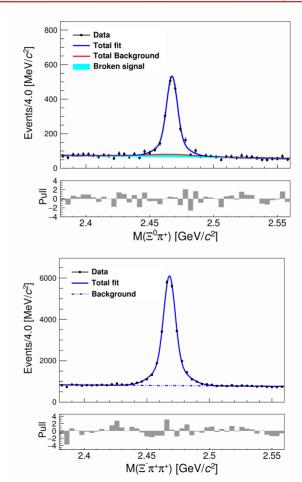
Mixing in Charm Mesons Decays

- Fit decay time t and per-candidate uncertainty σ(t) simultaneously in Dalitz bins
- Shapes: directly determined from the t or data templates from the m($K_S^0 \Pi^+\Pi^-$) sideband
- Results:

$$x = (4.0 \pm 1.7 \pm 0.4) \times 10^{-3}$$

 $y = (2.9 \pm 1.4 \pm 0.3) \times 10^{-3}$

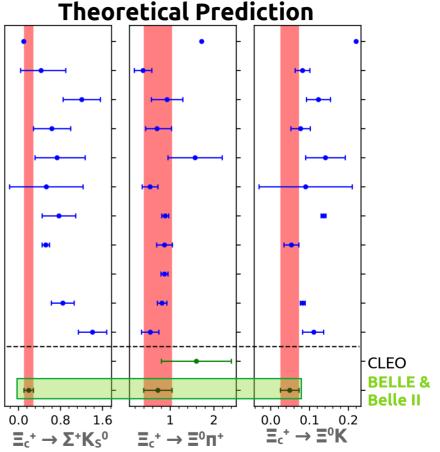
→ **20% and 14% improvement** compared to previous model-dependent determinations



Charmed Baryons Branching Fractions

Measure the BR of Ξ_c^+ decays in a **BELLE + Belle II** combined analysis:

- reconstruct $\Sigma^+ K_s^0$, $\Xi^0 \Pi^+$ and $\Xi^0 K^+$ decays
- currently many predictions
 → need measurement to rule out some of them
- from π, K and p reconstruct intermediate baryons
 Λ, Σ, Ξ, then optimize selection ranges on
 each invariant mass
- measure signal yields with invariant mass fit, extract branching fractions using $\Xi_c^+ \to \Xi^- \Pi^+ \Pi^+$ as normalization mode



Measure the BR of Ξ_c^+ decays in a **BELLE + Belle II** combined analysis:

- reconstruct $\Sigma^+ K_S^0$, $\Xi^0 \Pi^+$ and $\Xi^0 K^+$ decays
- currently many predictions
 → need measurement to rule out some of them
- from π, K and p reconstruct intermediate baryons Λ , Σ , Ξ , then optimize selection ranges on each invariant mass
- measure signal yields with invariant mass fit, extract branching fractions using $\Xi_c^+ \to \Xi^- \Pi^+ \Pi^+$ as normalization mode

$$B(\Xi_c^+ \to \Sigma^+ K_s^0) = (0.194 \pm 0.021 \pm 0.009 \pm 0.087) \%$$

 $B(\Xi_c^+ \to \Xi^0 \Pi^+) = (0.719 \pm 0.014 \pm 0.024 \pm 0.322) \%$
 $B(\Xi_c^+ \to \Xi^0 K^+) = (0.049 \pm 0.007 \pm 0.002 \pm 0.022) \%$
most precise

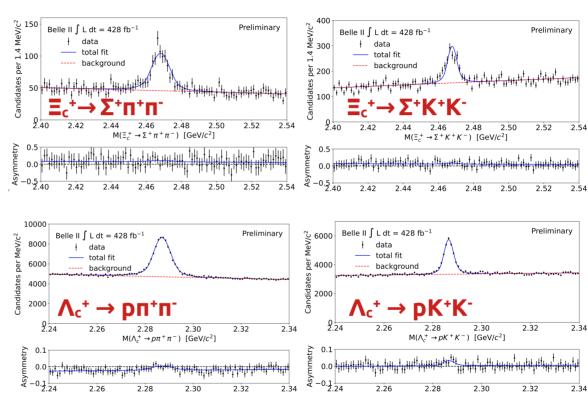
U-spin rule that connects the Single-Cabibbo-Suppressed (SCS) $\Lambda_c^+ \to ph^+h^-$ and and $\Xi_c^+ \to \Sigma^+h^+h^-$ (h = K, π) direct CP asymmetries:

$$A_{CP}(\Xi_c^+ \to \Sigma^+ \pi^+ \pi^-) + A_{CP}(\Lambda_c^+ \to pK^+ K^-) = 0, A_{CP}(\Xi_c^+ \to \Sigma^+ K^+ K^-) + A_{CP}(\Lambda_c^+ \to p\pi^+ \pi^-) = 0.$$

$$A_N(X_c^+ \to f^+) = A_{CP}(X_c^+ \to f^+) + A_p(X_c^+) + A_d(f^+)$$

- Raw asymmetry extracted from a fit to the baryon invariant mass
- **Production asymmetry** (odd in $cos\theta_{CM}$) is removed by averaging it on forward and backward decays
- Detection asymmetry removed using CF control channels that provide high yields and negligible CPV

arXiv:2509.25765


$$A_{CP}(\Xi_c^+ \to \Sigma^+ K^+ K^-) = (3.7 \pm 6.6 \pm 0.6)\%$$

$$A_{CP}(\Xi_c^+ \to \Sigma^+ \pi^+ \pi^-) = (9.5 \pm 6.8 \pm 0.5)\%$$

$$A_{CP}(\Lambda_c^+ \to p K^+ K^-) = (3.9 \pm 1.7 \pm 0.7)\%$$

$$A_{CP}(\Lambda_c^+ \to p \pi^+ \pi^-) = (0.3 \pm 1.0 \pm 0.2)\%$$

- First measurement of A_{CP} in SCS three-body charm baryon decays
- Statistical uncertainty that reach 1% in the Λ_c⁺ → pπ⁺π⁻ channel much smaller systematics
- Results consistent with CP symmetry and the U-spin rule

Very few measurements exist

- → often assuming charm baryon unpolarized
- → apply simplified spin formalism

Can be studied from two points of view:

- 1. Fragmentation Functions
- 2. Form Factors [3]

Spontaneous hadron polarization observed in hadron-hadron collisions

- → Polarizing Fragmentation Functions (FF):
- describe the production of a transversely polarized hadrons in the fragmentation of an unpolarized quark
- are needed as non-perturbative inputs for the calculation of all the cross sections

Very few measurements exist

- → often assuming charm baryon unpolarized
- → apply simplified spin formalism

Can be studied from two points of view:

1. Fragmentation Functions

Spontaneous hadron polarization observed in hadron-hadron collisions

→ Polarizing Fragmentation Functions (FF):

- describe the production of a transversely polarized hadrons in the fragmentation of an unpolarized quark
- are needed as non-perturbative inputs for the calculation of all the cross sections

2. Form Factors [3]

Progress in the study of light baryons, including a first attempt to calculate the charge radius of the Λ based on the measured time-like form factors

How would the heavier charm quark affect the quark dynamics and the inner structure?

- \rightarrow time-like complex form factors G_E and G_M accessible in the annihilation process through the joint angular distribution of production and decay
- → the relative phase manifests through a polarized final state!

Charmed Baryons Polarization

Very few measurements exist

- → often assuming charm baryon unpolarized
- → apply simplified spin formalism

Can be studied from two points of view:

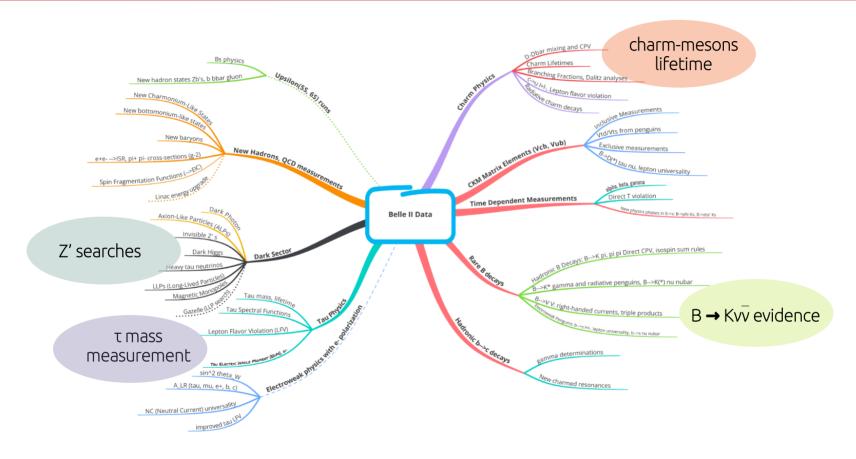
- 1. Fragmentation Functions
- 2. Form Factors [3]

Belle II is currently investigating the inclusive process $e^+e^- \to \Lambda^+_c + X$ to **evaluate the transverse polarization of the** Λ^+_c **hyperon**

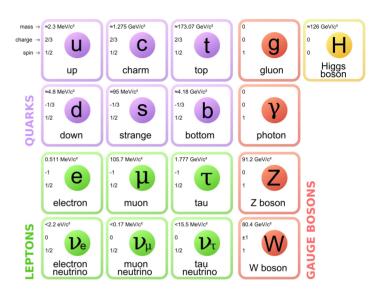
→ the better we know the production process, the better precision we can reach in future decay studies and CP tests with charm baryons

Conclusion

- Charm physics provides a powerful probe of flavor dynamics, CP violation, and possible new physics beyond the Standard Model
- Belle II offers a clean environment and exceptional sensitivity for precision SM tests and new physics searches
 - → Recent results include *first observations and world-leading measurements* in charm meson and baryon decays
 - → Charmed baryon polarization studies are ongoing demonstrating strong future potential
 - → With more data and improved techniques, Belle II will lead the field in the coming years

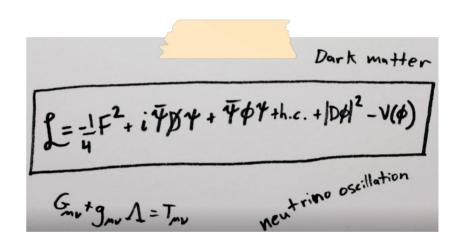

Run 2 ongoing – stay tuned!

Backup


Belle II: the physics program in this talk

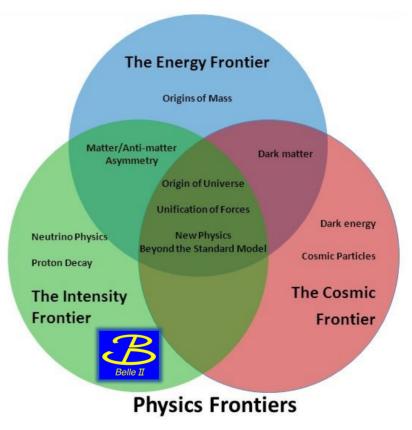
Standard Model: a successful theory

- the Standard Model (SM) is the best tested theory of nature at fundamental level describing particles ad their interactions:
 - the elementary fermions and bosons have been observed and their properties measured
 - the quark model predicts the vast majority of observed bound states, mesons and baryons



- interactions between mesons, baryons and lepton are predicted with a precision of O(1%)
- hundreds of observables (branching ratios, CP violation parameters, asymmetries,
 ...) are measured to be consistent with the theory predictions

Standard Model: open questions


- there are still open questions coming from observations unexplained by the SM
 - no explanation of the observed matter-antimatter asymmetry
 - no dark matter candidate or dark energy explanation
 - no explanation of masses hierarchy, ...
- and tensions between measurements and SM predictions that need to be interpreted (see (g-2)_µ for example)

Moving beyond the Standard Model

- at energy frontier experiments are able to discover new particles
 - \rightarrow mass reach for new particle $O(1 \text{ TeV}/c^2)$
- at rare/precision frontier, observable signatures of new particles or processes can be obtained through measurements of flavor physics reactions at lower energies
 - → an observed discrepancy can be interpreted in terms of (New Physics) NP models
 - unprecedented sensitivity to the effect of NP
 - probes NP mass scale higher than the one accessed at the energy frontier

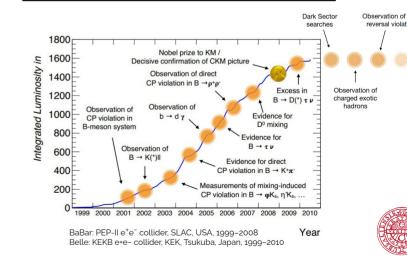
Belle II: the collaboration

27 countries, 123 institutions, >1000 members

Belle II: the collaboration

B-factories: first generation

Dedicated experiment at e⁺e⁻ asymmetric-energy colliders for the production of a BB pairs:



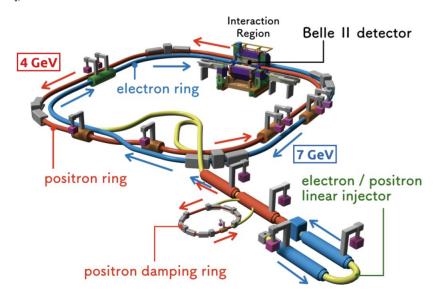
- \rightarrow Belle and BaBar have collected together 1.5 ab⁻¹
- → the majority of existing measurements are limited by statistical uncertainties

not only $B\overline{B}$ are produced:

$$\sigma(e^+e^- \rightarrow b\overline{b}) = 1.1 \text{ nb}$$

 $\sigma(e^+e^- \rightarrow c\overline{c}) = 1.3 \text{ nb}$
 $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.9 \text{ nb}$
 $\sigma(e^+e^- \rightarrow uds) = 2.1 \text{ nb}$

→ rich charm, τ, quarkonium and low-multiplicity program

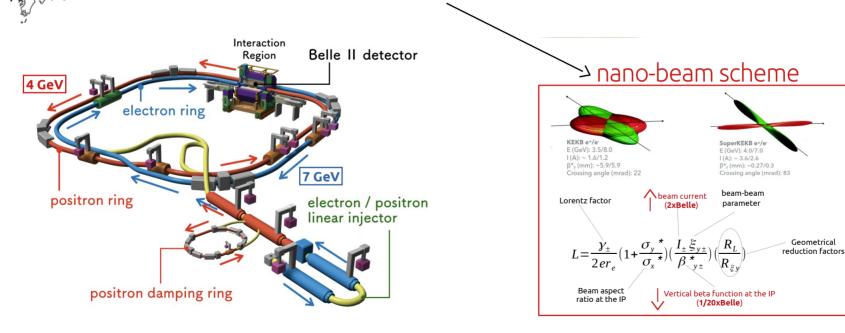


UPPSALA

UNIVERSITET

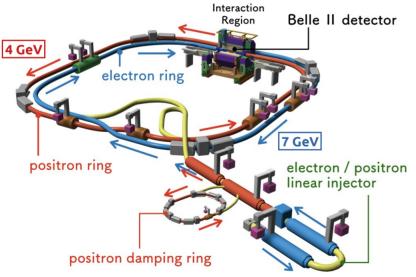
SuperKEKB: a second generation B-factory

- in the second se
- SuperKEKB is a 2nd generation asymmetric e⁺e⁻collider at the Y(4S) energy located at **Tsukuba, Japan**
- target instantaneous luminosity is 6x10³⁵ cm⁻²s⁻¹ (x30 KEKB/Belle)



SuperKEKB: a second generation B-factory

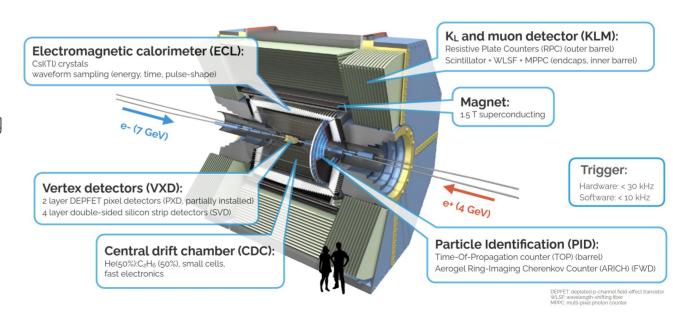
SuperKEKB is a 2nd generation asymmetric e⁺e⁻ collider at the Y(4S) energy located at Tsukuba, Japan


target instantaneous luminosity is 6x10³⁵ cm⁻²s⁻¹ (x30 KEKB/Belle)



SuperKEKB: a second generation B-factory

- The season of th
- SuperKEKB is a 2nd generation asymmetric e⁺e⁻ collider at the Y(4S) energy located at **Tsukuba**, **Japan**
- target instantaneous luminosity is 6x10³⁵ cm⁻²s⁻¹ (x30 KEKB/Belle)



Belle II: the detector

- efficient reconstruction of neutrals (γ , π^0 , η , η' ...)
- high trigger efficiency (including some specific trigger for low-multiplicity events)
- excellent particle identification capabilities
- very good vertexing

Direct CP asymmetry measurement in $D^0 \rightarrow \pi^{\dagger}\pi^0$

- self-tagging decay but $D^{*+} \rightarrow D^{+}\pi^{0}$ decays are also reconstructed
- raw asymmetry extracted from a fit to the D+ invariant mass

$$A_{CP}(D^+ \to \pi^+ \pi^0) = \frac{\Gamma(D^+ \to \pi^+ \pi^0) - \Gamma(D^- \to \pi^- \pi^0)}{\Gamma(D^+ \to \pi^+ \pi^0) + \Gamma(D^- \to \pi^- \pi^0)}$$

- → split in *D*-tagged* and *non-tagged* candidates improves precision given the different backgrounds and purities
- compatible with CP conservation
 - 30% improvement in statistical precision wrt BELLE thanks to much higher purities at Belle II; systematics also reduced by a factor 2
 - more precise than LHCb (9/fb)

