

Unravelling the cosmic reionisation puzzle: 21cm signal – galaxy synergies

Anne Hutter Cosmic Dawn Center, University of Copenhagen

Collaborators: Caroline Heneka, Astraeus Team (Pratika Dayal, Maxime Trebitsch, Stefan Gottlöber, Gustavo Yepes), Andrei Mesinger

How did reionisation proceed? How did the state of the intergalactic medium change?

How did reionisation proceed? How did the state of the intergalactic medium change?

Why cross-correlating 21cm and galaxy surveys?

@ 120 MHz

Positions of high-z galaxies correlate with EoR 21cm signal but not with spectrally smooth foregrounds

What this talk will be about:

How does the large-scale 21cm – galaxy cross correlation power evolve across cosmic time?

What can we learn from the 21cm-galaxy cross correlation functions and cross power spectra during reionisation?

 \blacktriangleright What type of 21cm and galaxy surveys would we need?

What this talk will be about:

How does the large-scale 21cm – galaxy cross correlation power evolve across cosmic time?

What can we learn from the 21cm-galaxy cross correlation functions and cross power spectra during reionisation?

 \blacktriangleright What type of 21cm and galaxy surveys would we need?

What cross correlation signal do we expect at different epochs?

What cross correlation signal do we expect at different epochs?

Neutral fraction and spin temperature fluctuations drive the 21cm-galaxy cross power spectrum

Sign change in 21cm-galaxy cross power traces end of heating!

Moriwaki+ 2024

Sign change in 21cm-galaxy cross power traces end of heating!

Sign change in 21cm-galaxy cross power traces end of heating!

Emission line selected galaxies or intensity mapping provide best redshift accuracy

redshift z

21cm heated region ionised region densitv ^o galaxy Je galaxy Credit: J. Munoz NIRSpec/PRISM **OIII** emitters Lyman-α emitters e.g. Moriwaki+ 2019 e.g. Hutter+2017,2018,2023b; Kubota+ 2018; Vrbanec+2016, 2020; Weinberger+2020; LIM real mark what the work e.g. Heneka+ 2017,2021

What this talk will be about:

How does the large-scale 21cm – galaxy cross correlation power evolve across cosmic time?

What can we learn from the 21cm-galaxy cross correlation functions and cross power spectra during reionisation?

 \blacktriangleright What type of 21cm and galaxy surveys would we need?

21cm – LAE cross correlation function: characteristics

small-scale amplitude

Hutter, Heneka+ 2023

Simulation results during the EoR: 21cm – LAE cross correlations

normalisation, box size, physics (ionisation, LAE identification)?

Astraeus – a fast framework for simulating the evolution of the first galaxies and the intergalactic medium

DARK MATTER ONLY N-BODY SIMULATION

Astraeus – a fast framework for simulating the evolution of the first galaxies and the intergalactic medium

Two reionisation scenarios differing in their ionisation morphology

Where are Lyman-α emitters located in the IGM?

LAEs are located in the most ionised overdense regions

no 21cm signal

21cm – LAE cross correlation functions: small-scale amplitude

During reionisation:

$$\xi_{21,LAE}(r pprox 0) pprox - \langle \chi_{HI} \rangle \langle 1 + \delta \rangle_{HI}$$

21cm <u>Lyα</u> luminosity increasing **MHINO** 21cm

Hutter, Heneka+ 2023

21cm – LAE cross correlation function: small-scale amplitude traces ionisation morphology!

Hutter, Heneka+ 2023

21cm – LAE cross correlations are sensitive to ionisation morphology!

21cm – LAE cross correlations are sensitive to ionisation morphology!

21cm – LAE cross correlations are sensitive to ionisation morphology!

21cm – LAE cross power spectra sensitive to ionisation morphology!

A higher (negative) cross power amplitude implies an overall higher HI density Sign change in cross power corresponds to the typical size of ionised regions.

Ionisation morphology distinguishable by measuring 21cm – LAE cross power spectra?

21cm: SKA1-LOW (baselines < 10km)

LAEs: Subaru Prime Focus Spectrograph (σ_z =0.0007)

Survey area: FoV = 25 deg² Survey depth: $L_{\alpha} > 10^{42}$ erg/s

What this talk will be about:

How does the large-scale 21cm – galaxy cross correlation power evolve across cosmic time?

What can we learn from the 21cm-galaxy cross correlation functions and cross power spectra during reionisation?

What type of 21cm and galaxy surveys would we need?

$$\sigma_{21,gal}^{2}(k,\mu) = \frac{1}{2} \left[P_{21,gal}^{2}(k,\mu) + \left(\underbrace{P_{21}(k,\mu)}_{21} + \underbrace{P_{21}^{noise}(k,\mu)}_{21} \right) + \underbrace{P_{21}^{noise}(k,\mu)}_{21} \right) \left(\underbrace{P_{gal}(k,\mu)}_{21} + \underbrace{P_{gal}^{noise}(k,\mu)}_{21} \right) \right]$$

$$\frac{1}{\sigma_{21,gal}^2(k)} = \sum_{\mu} N_k \frac{1}{\sigma_{21,gal}^2(k,\mu)}$$
$$N_k = \frac{k^2 \Delta k \Delta \mu V_{surv}}{(2\pi)^2}$$

 $k \quad [Mpc^{-1}]$

21cm – galaxy cross correlation uncertainties forecasts

see also LaPlante+ 2023 for HERA-Roman; Heneka+ 2021 for SKA-SPHEREx; Heneka+ 2020, Hutter+ 2018, Kubota+2018, 2020, Vrbanec+ 2020 for SKA-Subaru

Conclusions

- How does the large-scale 21cm galaxy cross correlation power evolve across cosmic time?
 - Cross power changes sign three times: onset of X-ray heating, end of X-ray heating, end of reionisation
 - Second sign change tracks when IGM is heated
- What can we learn from the 21cm-galaxy cross correlation functions and cross power spectra during reionisation?
 - Ionisation history and morphology:
 - Real-space small-scale amplitude traces overall IGM HI density
 - Inversion (cross correlation fuction) or sign change (cross power spectrum) trace typical size of ionised regions around galaxies
- What type of 21cm and galaxy surveys would we need?
 - Balance between large survey area (21cm driven uncertainties) and large survey depths (galaxy driven uncertainties): area timewise cheaper than depth

21cm – LAE cross correlations trace the 21cm profile around LAEs

EOS simulations with 21cmFAST (1.6 Gpc)³ with 1024³ cells Mesinger+ 2016

LargeHII scenario: only halos with $T_{vir} > 2 \times 10^5 \text{ K}$ are sources

Hutter, Heneka+ 2023

Too small boxes underestimate 21cm – LAE cross correlation amplitudes due to missing large-scale power

Simulation volumes of larger than \sim (250 cMpc)³ needed.

Neutral fraction and spin temperature fluctuations drive the 21cm-galaxy cross power spectrum

