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Stellar winds

Massive stars launch powerful,

hypersonic winds. The study of

interactions of stellar winds and shock

physics include:

& stellar bubbles

¢ stellar bow shocks
¢ colliding-wind binaries
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Shocks

A perturbation that propagates with a supersonic speed generates a shock wave.

The bulk kinetic energy of the fluid is converted into internal energy in the shocks.

The shock compresses and heats the gas
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Diffusive (shock) acceleration of particles
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Spherical wind +
supersonic stellar
motion (w.r.t. its
environment) =

stellar bow shock

Stellar bowshocks

Weaver+ 1977




Spherical wind +
supersonic stellar
motion (w.r.t. its
environment) =

stellar bow shock

Stellar bowshocks
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Stellar bow shocks

- Unshocked
FS = slow, dense (f-f, dust, ISM

lines)
RS = fast (hon-thermal
emission, X-rays?)

Unshocked SW
This structure is

embedded within an HII T/4/f

RS

region.
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Stellar bow shocks

Peri+ 2012
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Runaway stars represent a significant fraction (~10-20%)
of massive stars of spectral type O (Maiz Apellaniz+ ]
2018). g ]
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The main tracer of bow shocks is the IR emission from
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heated dust (also optical lines, e.g. H_):
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Peri+ 2012 (2015) — Catalogue of 28 (45) objects. = |
Kobulnicky+ 2017 — Catalogue of 709 objects. ]
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Observations

BD+43 3654
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The first stellar bowshock with detected non-thermal radio emission: <a> = -0.5.

Issue: missing flux?

oo




Observations

Intensity @3 GHz (JVLA) spectral index (2-4 GHz)

Declination {J2000)
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e Significant diffuse and soft (a<-1)
emission, previously undetected.

® Lack of polarisation in the
synchrotron emission (< 0.5%)
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Observations

More observations of BD+43° 3654 (still missing flux)
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Observations

2" non-thermal bowshock detected
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Observations
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Single-dish observations with Effelsberg. Issue: too much contamination!

Intensity @4.5 GHz (Effelsberg)

20h34m30s 7 33m30°
RA (J2000)

Intensity @4.5 GHz (Effelsberg)

Dec (J2000)

23h22m00s  21™30% 00* 20m300 00* 19m30°
RA (J2000)




Observations

MeerKAT detection of the bow shock of Vela
X-1 at 1.4 GHz (Van den Eijnden+ 2021) 0'00.0

Low S/N, no spectral information O 36'00.0

— Not clear if it is synchrotron emission

RA
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Observations
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Systematic search for radio counterparts of
stellar bow shocks in the RACS survey (ASKAP
@887 MHz; Van den Eijnden+ 2022).
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Observations

Van den Eijnden+ 2024: detection of LS 2355 with ASKAP surveys.
Issue: Unreliable spectral indices (a < -2 — missing flux, need more short baselines)
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Observations

Van den Eijnden+ 2024: detection of LS 2355 with ASKAP surveys.
Issue: Unreliable spectral indices (a < -2 — missing flux, need more short baselines)
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Non-thermal emission model

del Palacio+2018

1. Bowshock = axisymmetric shell
. . . B Unshocked
2. RS adiabatic and laminar flow i N ISM
3. NT particles accelerated in the RS — NT \
emission (sync., IC, p-p)

4. Free parameters: B-field intensity and

Unshocked SW
fraction of energy injected in relativistic

particles (f,.); projection angle in the sky (i) T //’

5. Binthe bow shock — B in stellar surface:

B(0) = [¢587P(0)]"> GmemB,. = 0.25 B(6) (R(6)/R) (Voo /ror

dmprgy (Vi +¢2)

)
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Stellar bow shocks

del Palacio+2018
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> We need detections at high energies (X/y -rays)

Results

Using our non-thermal emission model we could:

e Estimate the projection angle on the sky (i = 60°).
e Constrain the magnetic field intensity and the fraction

of power converted to non-thermal particles:

Bwcr ~ 35 — 100 uG === B, < 360 G
P
fNT,e ~ 1% — 10%

The degeneracy between these two parameters
cannot be solved with radio data alone
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Extended emitter model

Upgrades: Inclusion of free-free emission from the FS +
detailed modelling of the low-frequency emission

Shocked wind

Unshocked
stellar wind

Additional free parameters:
* Thickness of the isothermal layer

* E, ... inthe electron energy distribution

Epreak = 1.9 GV




Results

Martinez, del Palacio+2023
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Results e e

Martinez, del Palacio+2023
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Hard e distribution at E< 1 GeV
High magnetic-to-thermal pressure ratio ~0.2

High efficiency of electron acceleration (1-5% of P into relativistic e’)
In some sources it is not clear if the radio emission thermal or not -
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Conclusions

Stellar bow shocks are emerging as a class of non-thermal sources.

Low-frequency radio observations are ideal to probe their synchrotron

emission. SKA unprecedented sensitivity at different spatial scales can be a

game-changer to obtain reliable fluxes and spectral indices in faint sources.

Detailed modelling allow us to characterize the physical properties of the bow

shocks (kinetic power, magnetic fields, particle-acceleration efficiency...).

Synergy between observations at radio and high-energies (X-rays and y-rays).
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http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

Radio continuum SED

Plasmas also produce thermal rion-tharnial
emission — composite spectrum. thermal
total

Non-thermal emission dominates
the SED at low frequencies.

A wide frequency coverage is
Important to disentangle the
different components.

' Typical radio SED of a source




Relativistic particle acceleration

Diffusive shock acceleration

Converts kinetic energy into internal
energy. Requires strong shocks.

Magnetic reconnection

Converts magnetic energy into internal
energy. Requires strong magnetic fields
(+ topology + turbulence...)

Injected spectrum  —» Q(E) = QoE P X exp (—E/Ey.x)

Free parameters:

e Normalisation constant Q, (how much power is given to relativistic particles)

e Spectralindex (p=2-2.2)

e Maximum particle energy (acceleration efficiency + cooling/escape processes)

- NN S




Particle energy distribution

From the injection function Q(E,r,t) one can obtain the evolution of the particle energy distribution
N(E,r,t) by solving a transport equation that takes into account particle cooling and transport (escape).

Typically, N(E) is also a power law.

The emitted spectrum depends on N(E), not Q(E)

Inverse

‘ problem




Radliative processes: synchrotron

Electrons radiate in the presence of a
magnetic field. This emission is
Exponential . .. .

Ul intrinsically polarised.
Studying the synchrotron SED can give
insight on the relativistic particle
energy distribution (N(E)) and the

magnetic fields in the source.

Typical intrinsic synchrotron SED




Radiative processes: Inverse Compton

A relativistic electron Lic o< Lipj Urag

up-scatters a low e

\
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energy photon (e.g.,

Exponential cutoff

from a star) to higher =

max,e )

energies (hard

X-rays/y-rays)
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Results

The dependence of the emitted luminosity w.r.t. the system parameters shows that the best
candidates are defined by the stellar wind properties rather than the medium (del Palacio+2018)

Radio emission Lsy X Mi,g) 'U%v'5 n(I)S?\/I v,
-ray emission L M2 0.5

Best radio emitters = |
best y-ray emitters




Results

Breaking the degeneracy: predictions for the high-energy SED
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Results

Thermodynamical quantities along the bow shock
(normalized to quantities at the stagnation point, except the velocities which are normalized to v )

TMigm =

PHL/PiSM
PIL/PiSM




Stellar bow shocks

I
Flux [mJy beam‘1]

ot
o

0
4 2 0 2 4

[ | _ xmas] x [mas] del Palacio+ 2018

Synthetic emission maps before (top) and after (below) convolving with a gaussian beam




Gamma-ray emission’?

Sanchez-Ayaso+2018 suggested the possible association of two stellar BSs with unidentified
Fermi sources
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