Radio emission from stellar bowshocks in massive runaway stars

Santiago del Palacio Chalmers University of Technology

2nd National SKA Science Day Sweden (Sep 10-11, 2024)

Stellar winds

Massive stars launch **powerful,**

hypersonic winds. The study of interactions of stellar winds and shock physics include:

- ♢ stellar bubbles
- ♢ **stellar bow shocks**
- \diamond colliding-wind binaries
- ♢ microquasars

$$
\left\{\begin{aligned} &\dot{M}\sim 10^{-6}\ \mathrm{M}_\odot\ \mathrm{yr}^{-1}\\ &v_\infty\sim 1000\ \mathrm{km\,s}^{-1} \end{aligned} \right\}
$$

$$
\left\{\begin{aligned} &P_{\rm kin}\sim 10^{36}\ \mathrm{erg\,s}^{-1}\\ &E\sim 10^{50}\ \mathrm{erg} \end{aligned} \right\}
$$

Eta-Car

ichi

Shocks

A perturbation that propagates with a supersonic speed generates a shock wave. The bulk kinetic energy of the fluid is converted into internal energy in the shocks.

Stellar bowshocks

Spherical wind + supersonic stellar motion (w.r.t. its environment) =

Stellar bowshocks

Spherical wind + supersonic stellar motion (w.r.t. its environment) =

Stellar bow shocks

- \bullet **FS** = slow, dense (f-f, dust, lines)
- **RS** = fast (non-thermal emission, X-rays?)

This structure is embedded within an HII region.

Stellar bow shocks

Runaway stars represent a significant fraction (\sim 10-20%) $\frac{8}{3}$ Peri+ 2012 of massive stars of spectral type O (Maíz Apellániz+ 2018).

The main tracer of bow shocks is the IR emission from heated dust (also optical lines, e.g. H_a):

Peri+ 2012 (2015) \rightarrow Catalogue of 28 (45) objects. Kobulnicky+ 2017 \rightarrow Catalogue of 709 objects.

Single-dish observations with Effelsberg. Issue: too much contamination!

MeerKAT detection of the bow shock of Vela X-1 at 1.4 GHz (Van den Eijnden+ 2021)

Low S/N, no spectral information \rightarrow Not clear if it is synchrotron emission

Systematic search for radio counterparts of stellar bow shocks in the RACS survey (ASKAP @887 MHz; Van den Eijnden+ 2022).

Low S/N, no spectral information \rightarrow Not clear if it is synchrotron emission

2500 3000 3500 4000

Van den Eijnden+ 2024: detection of LS 2355 with ASKAP surveys.

<u>Issue</u>: Unreliable spectral indices (α < -2 \rightarrow missing flux, need more short baselines)

Van den Eijnden+ 2024: detection of LS 2355 with ASKAP surveys.

<u>Issue</u>: Unreliable spectral indices (α < -2 \rightarrow missing flux, need more short baselines)

Non-thermal emission model

- del Palacio+2018 1. Bowshock = axisymmetric shell
- 2. **RS** adiabatic and laminar flow
- 3. NT particles accelerated in the RS \rightarrow NT emission (sync., IC, p-p)
- 4. Free parameters: *B*-field intensity and fraction of energy injected in relativistic particles (f_{NT}) ; projection angle in the sky (*i*)
- 5. *B* in the bow shock \rightarrow *B* in stellar surface:

 $B(\theta) = \left[\zeta_B 8\pi P(\theta)\right]^{1/2} - B_{\star} = 0.25 B(\theta) (R(\theta)/R_{\star}) (v_{\infty}/v_{\text{rot}})$

Stellar bow shocks

Using our non-thermal emission model we could:

- Estimate the projection angle on the sky (*i* ≅ 60°).
- Constrain the magnetic field intensity and the fraction of power converted to non-thermal particles:

$$
\begin{aligned}[t] B_{\text{WCR}} &\sim 35-100~\mu\text{G} &\longrightarrow \text{ }B_{\star} \leq 360~\text{G}\\ f_{\text{NT,e}} &\approx 1\%-10\% \end{aligned}
$$

The degeneracy between these two parameters cannot be solved with radio data alone

We need detections at high energies (X/γ) -rays)

Extended emitter model

Upgrades: Inclusion of **free-free emission from the FS** + detailed modelling of the low-frequency emission

Additional free parameters:

* Thickness of the isothermal layer

* E_{break} in the electron energy distribution

Conclusions

- ♢ **Stellar bow shocks** are emerging as a class of **non-thermal sources**.
- ♢ **Low-frequency radio observations are ideal** to probe their synchrotron emission. SKA unprecedented sensitivity at different spatial scales can be a game-changer to obtain reliable fluxes and spectral indices in faint sources.
- ♢ Detailed **modelling** allow us to characterize the **physical properties of the bow shocks** (kinetic power, magnetic fields, particle-acceleration efficiency…).
- ♢ **Synergy between observations at radio and high-energies** (X-rays and -rays).

santiago.delpalacio@chalmers.se

Radio continuum SED

- Plasmas also produce thermal $emission \rightarrow composite spectrum.$
- **Non-thermal emission dominates the SED at low frequencies**.
- A wide frequency coverage is important to disentangle the different components.

Relativistic particle acceleration

Diffusive shock acceleration

Converts kinetic energy into internal energy. Requires strong shocks.

Magnetic reconnection

Converts magnetic energy into internal energy. Requires strong magnetic fields (+ topology + turbulence...)

 $Q(E) =$ Injected spectrum

$$
Q_0 E^{-p} \times \exp \left(- E/E_{\rm max} \right)
$$

Free parameters:

- \bullet Mormalisation constant Q_{0} (how much power is given to relativistic particles)
- Spectral index ($p = 2 2.2$)
- Maximum particle energy (acceleration efficiency + cooling/escape processes)

Particle energy distribution

From the injection function Q(E,**r**,t) one can obtain the evolution of the particle energy distribution N(E,r,t) by solving a transport equation that takes into account particle cooling and transport (escape). Typically, $N(E)$ is also a power law.

Radiative processes: synchrotron

Electrons radiate in the presence of a magnetic field. This emission is intrinsically **polarised**. Studying the synchrotron SED can give insight on the **relativistic particle energy distribution** (*N(E)*) and the **magnetic fields** in the source.

 $\nu_{\rm sy} \propto B E^2$

Radiative processes: Inverse Compton

A relativistic electron up-scatters a low energy photon (e.g., from a star) to higher energies (hard $X-rays/y-rays)$

The dependence of the emitted luminosity w.r.t. the system parameters shows that the best candidates are defined by the stellar wind properties rather than the medium (del Palacio+2018)

Breaking the degeneracy: predictions for the high-energy SED

Thermodynamical quantities along the bow shock

(normalized to quantities at the stagnation point, except the velocities which are normalized to $\mathsf{v}_{_{\mathsf{w}}\!)}$

Stellar bow shocks

Gamma-ray emission?

Sánchez-Ayaso+2018 suggested the possible association of two stellar BSs with unidentified Fermi sources

