Exploring the Structure of Evolved Stars' Extended Atmospheres: SKA Capabilities and Observation Opportunities

Behzad Bojnordi Arbab

Wouter Vlemmings

Sussanne Höfner

Asymptotic Giant Branch (AGB) stars

Why are AGB stars important?

→Time [Gyr]

Structure of AGB stars

Höfner & Olofsson 2018

ical here	Circumstellar envelope	ISM
dust formation	molecule destruction and formation	ionization
silicates, Mg/Al-oxides	$H_2O \rightarrow OH + H \qquad OH \rightarrow O + H$ S + OH \rightarrow SO + H	OII
amorphous C, SiC	$HCN \rightarrow CN + H \qquad CN \rightarrow C + N$ $CN + C_2H_2 \rightarrow HC_3N$	СІІ

© Sofie Liljegren

Model and Radiative transfer

- Radiation-hydrodynamical DARWIN model An315u3 (Höfner 2022)
- LTE, free-free emission of free electrons and atomic Hydrogen
- Free electron sources: *K*⁺, *Na*⁺, *Ca*⁺, and *Al*⁺
- Fit the brightness temperature profile

Frequency- and phase-dependent photosphere radius

- The photosphere radius mostly follows density profiles
- We see deeper with higher frequencies \rightarrow we see generally hotter regions

- On the shock, the measured radius for a wide range of frequencies merge
- The radius increases with shock then falls to the next shock

Some features in resolved observations: Brightness temperature and gas temperature

Some features in resolved observations: Brightness temperature and gas temperature

Some features in resolved observations: Brightness temperature and gas temperature

Some features in resolved observations: **Resolved Spectral Index**

An315u3

6

An315u4

Some features in resolved observations: Photosphere radial velocity

Photosphere radial velocity

Photosphere radial velocity

- Vlemmings et al 2024 (Nature)
- R Doradus at 55 ± 3 pc
- Pulsation periods of 362 and 175 days
- Largest configuration of ALMA and bands 6 ullet(≈ 225 GHz) and band 7 (≈ 338 GHz)
- Shows a stellar disc with a radius of 1.64 ± 0.09 au at 338 Ghz

R Dor 338 GHz

9

Day: 0.0

Day: 0.0

- Variations are significant
- Granule size (Red bar) estimated from spatial PSD \rightarrow structure on the disc
- Structure sizes on the limb are comparable to the disc granule size
- Compared to the local sound speed of ≈ 6 km/s, the variations are consistent with supersonic shocks resulting from convection
- The time scale of surface granule variations $\approx 33 \pm 3$ days

11

What does SKA see?

12

What does SKA see?

12

Capabilities of SKA in unresolved observations

- Flux density profile for stars within 3kpc
- Higher signal-to-noise compared to VLA
- Detect AGB stars within 1kpc with only a few minutes of observing time
- Recurring unresolved visits of AGBs as far as 1kpc as dedicated projects and piggy-back on survey projects

Capabilities of SKA in resolved observations

- The highest bands (5a and 5b) are suitable for resolved observations of nearby AGB stars
- Resolving in the dust-forming region
- Brightness temperature measurements of the disc in a wide range of frequencies
 → constrain temperature and density profile in the extended atmosphere
- The wide field of view of SKA provides opportunities to revisit nearby AGBs several times during one period

Thank you for your attention

R Dor 338 GHz

